
, 

N ATI o NA L A E RON A u T ICS ND SPACE ADAlINISTRATtON - 0 -  W A S H  
I 

~ 

1 

NGTIIN, D. C. JUNE 197-0 

- I -  



1, Report No. 2. Government Accession No. 
NASA TR R-338 

4. T i t l e  and Subtit le 

Program Analysis--A Problem in 
Man-Computer Communication 

7. Author(s) 
Joseph Green 

9. Performing Organization Name and Address 

Electronics Research Center 
Cambridge, Mass. 

2. Sponsoring Agency Name and Addrass 

(National Aeronautics and Space 
Administration) 

5. Supplementary Notes 

3. Recipient’s Catalog No. 

5. Report Date 
June 1970 

6. Performing Organization Code 

8. Performing Organization Report No. 
C-89 

IO. Work Un i t  No. 
125-23-02-36-25 

11. Contract or Grant No. 

13. Type o f  Report and Per iod Covered 

Technical Report 
14. Sponsoring Agency Code 

6. Abstract 

This report presents a display oriented scheme to help 
the higher level language computer programmer to debug 
and analyze programs. Timed visual interpretive execu- 
tion and a variety of user instituted functions permit 
an informative dialogue between the man and the computer 
A prototype implementation of the system using FORTRAN 
as the higher level language is described,and the -~ result! 
are discussed from the point of view of the system 
developer as well as the point of view of the user, Also 
treated is the problem of what a time-sharing system 
should do to make graphical input tablets useful devices 
in a time-shared environment- 

17. Key Wards Debugging * Graphics 18. Distr ibut ion Statement 

-High level languages 
*Interpretive compiler Unlimited 
*Display *Interactive 

19. Security Classif. (of th is  repard 20. Security Classif. (of th is page) 21. No. ob Pages 22. Pr ice * 
Unclassified Unclassified 129 $3 -00 

For sale by the Clearinghouse for  Federal Scientific and Technical Information 
Springfield, Virginia 22151 

* 





TABLE OF CONTENTS 

LIST OF FIeURES ............................................. 
SUMMARY ..................................................... 
CHAPTER I - INTRODUCTION - THE PROBLEM OF PROGRAM ANALYSIS 

1.1 Trends in Computer Usage ....................... 
1 . 3  Interactive Graphics and Dynamic Analysis ....... 
2 . 1  Basics .......................................... 

2 . 1 . 1  Unifying Concepts ........................ 
2.1.2 Hardware ................................. 
2.1.3 Display Set-up ........................... 

2.2 Source Program Execution ........................ 
2 . 2 . 1  Introduction and Example ................. 
2.2.2 Non-executable Statements ................ 
2.2.3 Expressions .............................. 
2.2.4 Arithmetic Statements .................... 
2.2.5 Control Statements ....................... 
2.2.6 Logical Statements ....................... 
2.2 .7  Iterative LOOPS .......................... 
2.2 .8  Subroutine Calls ......................... 
2.2.9 Input/Output ............................. 
2.2 .10  Speed Control and Related Statements ..... 

2 . 3  Execution Functions ............................. 

1 .2  The Present Solution to Program Analysis ........ 
CHAPTER I1 - GRAPE THEORY 

2 . 3 . 1  Changes with Execution Stopped: 

2.3.2 Changes During Execution: 
.Null,+, ROLL, RESTART, SAVE ............ 
Breaklines, Display and Set Variables, 0 . 

2.4 Editing Functions ............................... 
>,m, A ,  Overwriting, & ................. 2 .4 .1  Changing Code: 

2.4.2 Checking Code : 
Line Numbers, Set Variables, Cross 
References? Compiler Diagnostics, 
UNUSED, T.SHO ........................... 

2. 5 Special Situations .............................. 
2.6 User's Manual ................................... 
3 . 1  Novel Hardware and Software Building Blocks ..... CHAPTER III - GRAPE PRACTICE 

3 . 1 . 1  Required ................................. 
3,1.2 Provided ................................. 

3.2 Implemented GRAPE -- User Side .................. 
3 . 2 . 1  Basics ................................... 
3.2.2 Source Program Execution ................. 
3.2.3 Execution Functions ...................... 
3.2. 4 Editing Functions ........................ 
3.2.5 User's Manual ............................ 

V 
1 

2 
3 
4 

5 
5 
8 

11 
11 
11 
1 4  
1 4  
1 7  
1 9  
1 9  
2 1  
2 1  
2 3  
2 4  
25 

2 5  

3 0  
37  

37  

3 9  
47 
55  

5 6  
56  
5 7  
6 0  
6 0  
60  
6 1  
66 
68 

iii 



Page 

3 * 3  Implemented GRAPE .. System Side  ................ 6 9  
3 .3 .1  Concepts i n  t h e  Programming .............. 6 9  
3.3.2 S t r u c t u r e  o f  t h e  System .................. 6 9  
3*3 .3  Data S t r u c t u r e  ........................... 70  
3 .3*4  Other System Information ................. 7 1  
3 ,3 .5  Graphical  Input  Tablet  I n t e r f a c e . .  ....... 74  
3.3. 6 Language ................................. 75 

3.4 R e s u l t s  of  Implementation ....................... 77 
3 .4 ,1  Teaching Tool/Analytic Tool .............. 77 
3.4.2 Debugging Tool/Programming Er ro r s . .  ...... 78 

4 . 1  C e n t r a l  Problems ................................ 83 
4 . 2  What Must Be Provided ........................... 84 
4.3 What Ought To B e  Provided ....................... 85 

4 .3 .1  Feedback ................................. 85 
4 .3-2  D a t a  Com;?ression ......................... 86 

4 .  4 What Might B e  Provided .......................... 87 
4 . 4 , l  Genera l  .................................. 87 
4 . 4 . 2  D a t a  Reduction ........................... 88 
4 -4 .3  Improved Buffer iny  ....................... 9 2  
4 . 4 . 4  Mode Analysis  ............................ 93 

CHAPTER I V  - TIME-SHARING H I G H  SPEED GRAPHICAL I N P U T  DEVICES 

CHAPTER V - EXPANSION AND CONTRACTION OF GRAPHICAL 
PROGRAM ANALYSIS 

5 .1  More Powerful Hardware and Software ............. 95 
5.2 L e s s  Powerful Hardware .......................... 98 

5.2.1 Disp lay ,  Light  Pen, and Keyboard 

5.2.2 Keyboard and Display Without 
Without Graphical  Tablet  ................. 98 

Light  Pen. ............................. * . l o 2  
5.2.3 Weaker Refresh Display .............. . . * . . l o 2  
5.2.4 Remote (Low Speed) S torage  Display ....... 1 0 5  

5 .3  Conclusions ............... =.......*............*lo. 
APPENDIX A - GRAPE PROGRAM LISTING .......................... 113 
REFERENCES ........................ *..............*..*.*....l 11 

i v  



Figure  

LIST O F  FIGURES 

Page 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
13  
1 4  
15 
1 6  
1 7  
18 
1 9  
2 0  
2 1  
2 2  
23 
2 4  
25 
26  
2 7  
28 
2 9  

Hardware Setup ................................... 9 
Tablet  ............................................ 1 0  
Speed e o n t r o l  .................................... 1 0  
Display Setup .................................... 1 2  
Typica l  Display .................................. 13  
Display Messages When t h e  Speed Is A t  STOP ....... 28 
Condensing A Program Loop ........................ 3 3  
Three Displayed Var i ab le s  ........................ 4 1  
Four Displayed Var i ab le s  ......................... 4 1  
E r ro r  Message .................................... 43 
Statement  Cross Reference ........................ 4 4  
Var iab le  C r o s s  Reference ......................... 45 
Unused  code................^..*...*... ........... 4 6  
Trash F i l e  ....................................... 48 
Display Output ................................... 50 
ARRAY ( 2 4 )  ....................................... 52 
ARRAY ( 4 ,  3 )  ...................................... 53 
ARRAY (50 ,  9 )  ..................................... 54 
Display Setup .................................... 6 2  
Language Syntax .................................. 63 

Typica l  Display .................................. 65 

Program With An I n f i n i t e  Loop .................... 80 
Execution Of An I n f i n i t e  Loop .................... 81 
Display Messages When The Speed Is A t  STOP ....... 101 
Speed Cont ro l  .................................... 103 

Display Setup .................................... 107 

Sample Statements  ................................ 6 4  

GRAPE Block Diagram .............................. 73 

Display Messages When The Speed Is A t  STOP ....... 1 0 4  

V 



PROGRAM ANALYSIS - A PROBLEM 
IN MAN-COMPUTER COMMUNICATION 

By Joseph Green* 
Electronics Research Center 

SUMMARY 

The writer of higher level language computer programs has 
few tools available to help him debug a program that he has 
written or to help him understand a program that someone else 
has written. This report presents a display oriented scheme to 
aid in higher level language program analysis. 

Using a computer driven refresh display for output and a 
graphical tablet for input, the GRAPE (GRaphical Analysis of 
Program Execution) system presents information to the user 
about the source program as it is executing. About forty source 
program statements are displayed on the screen at one time, and 
as each statement executes, that statement is briefly modified 
to show the results of the execution. Besides the source pro- 
gram execution, execution functions such as the removal of blocks 
of statements from the screen and editing functions such as the 
setting of program variables comprise the system. 

A prototype version of GRAPE has been implemented using 
a subset of FORTRAN as the higher level language. The results 
of the implementation are described from the point of view of 
the system developer, as well as the point of view of the user. 
Included is a description of how the system must be modified to 
adapt to changes in the hardware configuration, ranging from a 
three-dimensional display down to a remote (low speed) storage 
display with keyboard input. 

One other topic treated in this report is the problem of 
what a time-sharing system should do to make graphical input 
tablets useful devices in a time-shared environment. 

*Submitted to Harvard University as Ph. D. thesis in Applied 
Mathematics May 1969. 



I, INTRODUCTION - THE PROBLEM OF PROGRAM ANALYSIS 

1,l Trends in Computer Usage 

Although computer programming is commonly taught in schools 
and businesses and is a skill required by many people, relatively 
little attention has been paid to the problems of programming. 
More study and analysis has been given to the problem of tape 
operating systems, for example, than has been given to the 
more general problem of hob7 to make a tape operating system, 
or any other program, run successfully once the basic design 
is worked out. 

The initial programming of a procedure used to control a 
computer has been aided by the development of computer languages 
designed for specific uses, but the manipulation and analysis 
of a computer program in order either to correct an improperly 
written program or to understand a basically correct program 
remains exceedingly difficult, The latter problem especially 
needs attention for purposes of teaching programming and because 
it is frequently true that it is easier to rewrite a program 
than to modify a program written by someone else. As yet, few 
tools exist to help an individual understand the structure of 
a given computer program, 

Several mutually reinforcing trends in computer utilization 
are accentuating this lack. First is the trend toward having 
non-professional computer users. If highly repetitive, time 
consuming jobs are to be automated, it may make sense to have 
an expert program for maximum efficiency. And if an engineer 
or physicist decides to learn to use computers, he already 
has much of the knowledge necessary to be adept at computer 
programming. But as uses for computers are developed in fields 
which are not computer oriented, the users become less profi- 
cient. Programming becomes more of a chore, and some automatic 
assistance is more desirable. 

Second, and coupled with the above, is the trend toward 
using the computer as an occasional tool rather than as the 
focal point of a project. Programs are written quickly, used 
once or twice, and then discarded. As a result, the time spent 
preparing programs is extremely high in proportion to the time 
spent interacting with the computer. 

Third is the increasing use of higher level languages 
such as FORTRAN, P’AD, ALGOL, PL/I. Programming is easier to 
learn and programs are faster to write when higher level 
languages are used- However, the writer of an assembly language 

2 



program has an understanding of the execution, or lack of 
execution, of his program which the writer of a higher level 
language program lacks. 

A fourth trend is the rapid increase in computer installa- 
tions. With more computers in existence, the chances are 
greater that someone else has already written a program which 
will do almost what one wants his program to do. 

As prople who are not professional programmers begin to 
use higher level languages to quickly write or modify computer 
programs to assist them in their work, it becomes more and more 
desirable to have effective ways to deal with and understand 
computer programs, This is true both for the relatively exper- 
ienced programmer with a complicated problem and for the novice 
programmer with a simple problem, if either of them must sit at 
a desk and simulate the operation of the computer because his 
program gave no output or did not work, 

1.2 The Present Solution to Program Analysis 

The higher level language programmer, whether he is learn- 
ing to program, trying to correct a complicated program he has 
written, or trying to modify a program written by someone else, 
would like to know how the program operates. Instead, what he 
has been getting for communication with his program is vestiges 
of the operation of his program from which he attempts to recon- 
struct what must have happened. When he is most unlucky, he 
gets nothing to guide him except the fact that his program failed. 
When he is luckier, he gets a memory dump. Memory dumps at the 
time of program failure constitute one extreme of description. 
None of the program operation is described, just the final results 
of its operation, At the other extreme is a machine cycle by 
machine cycle indication of the state of the computer. This 
sounds frightening and indeed it is, but countless programs 
written in a higher level language have been debugged at the 
console of a small computer because memory dumps and one day 
turnaround made batch process debugging a less desirable alter- 
native e 

The so called trace features of some compilers (ref. 1) are 
a decided improvement on this mode of operation. Yet they do 
not make debugging a simple task. If the user gets the message 
that WEIGHT has just been set to one million, he may indeed 
immediately realize that his error is in the only statement that 
sets the value of X which is then used to compute WEIGHT. But. 
a more frequent situation is that a variable used as a counter 
is being set incorrectly. To discover this error requires that the 
results of all arithmetic statements be listed, but more important, 

3 



it requires that the individual mentally put the message 
I1  1 = 4 11 into the framework of his entire program. A good analy- 
sis system must as much as possible supply that framework. 

Using these same features on a time-sharing system means 
that one can be selective about what is traced and can hopefully 
locate errors with several short runs rather than be inundated 
with trace data, But this also does not supply the context of 
the program in which a particular statement is executed. In 
addition, it is useless for finding errors in which a program 
decision is based on a comparison of variables X and Y instead 
of X and Z. And it is useless for giving insight into the way 
an unfamiliar program is structured. 

A major fault in all the methods above, except for console 
analysis, is they all leave the user trying to figure out what 
happened instead of letting him see what is happening. A major 
fault of trace features, because of time and space limitations, 
is that they are highly selective in the information they supply, 
A major fault of console analysis and memory dumps is that they 
convey information in a language which may be unfamiliar or un- 
known to the user (assembly language if he is lucky, octal num- 
bers if he is not) and, in any case, is not the language in 
which he is attempting to communicate with the computer. 

1.3 Interactive Graphics and Dynamic Analysis 

The higher level language programmer trying to analyze a 
program would be aided in his understanding if he could see the 
effect of all the statements in the program. The data trans- 
mission rate of a teletype is much too slow to make this fea- 
sible, but a computer driven display which is being refreshed 
through the computer output channel can show new information 
far faster than the human observer can digest it (ref. 2 ) .  
While a teletype can produce perhaps 15 characters per second, 
displays can produce up to 75,000. This means that there is 
no need for the output to be selective or for words to be abbre- 
viated. There is ample time to display all the information 
which the programmer would like to see, including any back- 
ground information which might help his understanding. Because 
display images disappear after they have been on the screen 
and because there are display techniques to emphasize certain 
portions of the picture, one can avoid giving the programmer 
so much material that he cannot locate the most relevant data. 

The use of high speed displays to aid higher level language 
programmers is the intent of GRAPE. GRAPE is a programming 

4 



system f o r  t h e  GRaphical Analysis  of Program Execution. I t  permi ts  
t he  programmer see his-higher l e v e r  language program execu te ,  
and it permi ts  him t o  i n t e rac t  wi th  t h a t  program a s  it i s  
execut ing.  I n  t u r n ,  it o p e r a t e s  under whatever execut ive  system 
i s  used on t h e  computer. T h e  GRAPE system i s  descr ibed  i n  
Sect ion I1 of t h i s  paper ,  and a p a r t i c u l a r  implementation of 
GRAPE i s  descr ibed  i n  Sec t ion  111. 

I f  i n t e r a c t i o n  between use r  and programmer i s  t o  occur l  
there must be an i n p u t  device.  For c e r t a i n  a spec t s  of t h e  GRAPE 
system c h a r a c t e r s  must be i n p u t  t o  t h e  computer, and the  device  
best s u i t e d  t o  t h i s  i s  t h e  g r a p h i c a l  i n p u t  t a b l e t  ( ref .  3 ) .  A 
powerful computer i s  needed t o  handle g raph ica l  devices  such a s  
d i s p l a y s  and tablets ,  b u t  i n t e r a c t i v e  use of t h i s  equipment means 
t h a t  t h e  use r  may spend only a small  f r a c t i o n  of h i s  t i m e  exe rc i s -  
ing the computer and t h e  bulk of h i s  t i m e  t h ink ing .  T h e  desire 
t o  br ing  u s e r s  "on l i n e "  w i t h  equipment which they w i l l  use f o r  
only a few seconds each minute o f t e n  l e a d s  t o  t i m e  shar ing .  
Therefore ,  t h e  execut ive  system under which GRAPE i s  running may 
be a t i m e  shar ing  system. Sec t ion  I V  p r e s e n t s  a gene ra l  approach 
t o  t he  problems of t i m e  shar ing  high speed g r a p h i c a l  devices  such 
a s  two dimensional t a b l e t s  and three dimensional Lincoln Wands 
( r e f .  4 ) .  

Sec t ion  V i s  p r imar i ly  concerned with t h e  changes t h a t  must 
be made i n  GRAPE when it i s  used w i t h  hardware conf igu ra t ions  
t h a t  range from t h r e e  dimensional d i s p l a y s  t o  remote s t o r a g e  
d i s p l a y s  

11. GRAPE THEORY 

2 . 1  Basics 

2 . 1 . 1  Unifying Concepts.- Sec t ion  I descr ibed  t h e  i n a b i l i t y  
of p r e s e n t  language t r a n s l a t o r  and computer execut ive  systems t o  
provide a supe r io r  c a p a b i l i t y  f o r  an i n d i v i d u a l ,  e i t h e r  computer 
expe r t  o r  novice,  t o  c o r r e c t  o r  modify a h igher  l e v e l  language* 
computer program. GRAPE provides  t h a t  c a p a b i l i t y .  I t  i s  a 
system f o r  d i sp l ay ing ,  on a computer d r iven  d i s p l a y ,  information 
about a program w h i l e  t h a t  program i s  being executed by t h e  
computer. This information i s  used t o  assist  i n  debugging t h e  
program i f  it has  e r r o r s ,  t o  assist i n  understanding t h e  program 
i f  mod i f i ca t ions  are being at tempted,  and t o  a s s i s t  i n  under- 
s tanding  programming i f  one i s  l e a r n i n g  t o  program. The program 
being analyzed i s  w r i t t e n  i n  a h igher  l e v e l  language, and the  
na tu re  of t h e  d isp layed  information i s  such as t o  make much 
e a s i e r  t h e  normally t i m e  consuming and t e d i o u s  t a s k  of under- 
s tanding  what a given program a c t u a l l y  does.  
"FORTRAN, ALGOL, MAD, P L / I  a r e  t y p i c a l  h igher  level languages,  

5 



The basic i d e a  of GRAPE i s  t h a t  t h e  computer executes  and 
d i s p l a y s  source program HLL (h igher  l e v e l  language) s ta tements  
a t  a ra te  s u i t e d  t o  t h e  observer  and shows on t h e  d i s p l a y  t h e  
r e s u l t  of t h a t  execut ion i n  t h e  language of t h e  source program, 
The observer  can a t  any t i m e  h a l t  execut ion ,  make changes t o  t h e  
source program, and res tar t  execut ion .  T h i s ,  i n  i t s e l f ,  i s  u s e f u l  
f o r  c e r t a i n  func t ions  such as teaching  programming, Y e t ,  t h e r e  
are several o t h e r  concepts which are a l so  v i t a l  i n  GRAPE t h a t  
make it an e f f e c t i v e  programming t o o l  f o r  both novice and expe r t .  

F i r s t ,  a l l  communication between man and computer i n  GRAPE 
i s  i n  t h e  language of t h e  program, a h igher  level  language, I n  
a d d i t i o n ,  t h e  u n i t  of information from t h e  computer i s  t h e  same 
u n i t  which t h e  man chose t o  use ,  a s i n g l e  HLL s ta tement .  

Second, continuous feedback i s  given t o  t h e  man. Extensive 
feedback can only  be given because of t h e  high d a t a  rates which 
t h e  computer d r iven  d i s p l a y  can produce and t h e  human eye/brain 
can accep t  and i n t e r p r e t .  The p r e c i s e  form of t h i s  feedback i s  
chosen t o  maximize information con ten t  whi le  minimizing t h e  mental  
load on t h e  man. 

Third i s  t h e  i d e a  of con tex t ,  A p a r t i c u l a r  p i e c e  of informa- 
t i o n  w i l l  be meaningful t o  t h e  man only i f  he has t h e  framework 
f o r  t h e  information being presented .  The high d a t a  rates of t h e  
d i s p l a y  permit  it t o  p r e s e n t  t h e  con tex t  surrounding a p a r t i c u l a r  
HLL program s ta tement .  F u r t h e r ,  t h e  new p iece  of information w i l l  
be emphasized over i t s  surrounding contex t .  

Thus t h e  d i s p l a y  must show a t  one t i m e  a t  l eas t  a s  much of 
t h e  source program being analyzed as a man would normally look 
a t  during a desk s imula t ion  of t h e  program opera t ion .  One i s  
supposed t o  f e e l  t h a t  t h e  e n t i r e  program i s  e s s e n t i a l l y  i n  f r o n t  
of him, and i f  t h e  window through which one i s  looking i s  too  
s m a l l  t h i s  f e e l i n g  i s  l o s t ,  There i s  a c r i t i c a l  s i z e  f o r  t h i s  
window below which a major purpose of GRAPE i s  not  se rved ,  and 
t h e r e f o r e  one may have t o  t o l e r a t e  s o m e  d i s p l a y  f l i c k e r  i n  o r d e r  
t o  achieve t h i s  s i z e .  This  c r i t i c a l  s i z e  i s  inf luenced  by 
several f a c t o r s .  A s i n g l e  l i n e  of code i n  a language such as 
BCPL ( r e f .  5 )  i s  usua l ly  more complex than  a s i n g l e  l i n e  of 
FORTRAN code, and fewer l i n e s  of code may be needed t o  reach  t h e  
c r i t i c a l  s i z e .  The increased  sha r ing  of computer programs among 
u s e r s  i s  leading  t o  t h e  shor ten ing  of program u n i t s  and t h e  
w r i t i n g  of subprograms t o  perform a program func t ion  even i f  t h a t  
func t ion  i s  invoked only once. Such subprograms are easier t o  
debug, t o  change, t o  s h a r e ,  and t o  understand. Display o r i e n t e d  
program a n a l y s i s  may both b e n e f i t  from and c o n t r i b u t e  t o  t h a t  
t r end ,  I n v e s t i g a t i o n  of numerous HLL programs i n d i c a t e s  t h a t  f o r  
long programs twenty-five l i n e s  of d i sp layed  code i s  a minimum 
and f o r t y  i s  more d e s i r a b l e .  O f  course  t h e  t e x t  must be i n  

6 



large enough characters to be easily readable, In the descrip- 
tion of GRAPE, techniques for increasing the size of the useful 
window will be shown. 

Fourth, since the speed of execution of the HLL program 
must be suited to the observer, there must be some speed control 
which provides for a wide range of execution speeds so that one 
can easily adjust or halt program execution. This control should 
have only one degree of freedom, should move continuously, should 
be stable when set to a value, and should be trivial to operate. 
It should not be something which falls down if one lets go of it, 
even if the speed is not thereby affected, 

Fifth, beside the speed control flexibility, there must be 
other execution capabilities. One must be able to manipulate the 
execution of the HLL program so that all the information one 
might want from this program is readily available. 

Sixth, one must have an editing facility which is sufficiently 
good that minor editing is not a major chore. It is character 
recognition software which recognizes graphical tablet input as 
being specific letters that permits such editing. 

Seventh, the system must be easy to learn and natural to 
use, Visual output as provided by a computer driven refresh 
display and pencil-and-paper input as provided by a graphical 
input tablet offer far more capability in this direction than 
other computer peripherals. 

Because a display can present so much data in a fraction of 
a second, there is no need to have the user learn abbreviations 
for everything. Both novice and expert can let the system supply 
him with complete information which will disappear as soon as he 
no longer needs it. 

The number of separate GRAPE functions has been kept to a 
minimum. Several of these functions are taken from previously 
learned human activities, and all functions have immediate feed- 
back and non-destructive effects. Therefore GRAPE is self- 
instructing to the extent that one learns about it by using it. 
The user's manual for GRAPE is one page long. There is almost 
nothing that need be memorized by the user in order to use the 
system, 

Using GRAPE, the programmer is dealing directly with his 
source language program. His hands and eyes are on his program, 
It is his program that is executing, not GRAPE, and not the 
binary result of a compilation. He is not talking about his 
program to an intermediary operating system, and he is not trying 
to glean information about events that have already happened. 

7 



2.1.2 Hardware.- The computer p e r i p h e r a l  hardware f o r  GRAPE 
c o n s i s t s  of a r e f r e s h  d i s p l a y  and a g raph ica l  i n p u t  t ab le t .  A 
p i c t u r e  of t h e  hardware s e t u p  i s  given i n  F igure  1." The f a c e  
of t h e  d i s p l a y  should be as l a r g e  as p o s s i b l e ,  s i n c e  t h e  charac- 
ters must be l a r g e  enough t o  be e a s i l y  readable  and t h e r e  should 
be as many l i n e s  of t e x t  as p o s s i b l e  on t h e  screen.  The d i s p l a y  
should be powerful enough t o  show several hundred c h a r a c t e r s  
without  s e r i o u s  f l i c k e r .  The g raph ica l  i n p u t  t a b l e t  need n o t  be 
more powerful than  t h e  weakest of t h e  c u r r e n t l y  a v a i l a b l e  ones. 
A twelve inch  square w r i t i n g  su r face  and a f i v e  mi l l i second 
i n t e r r u p t  ra te  i s  s u f f i c i e n t .  N o  s p e c i a l  purpose computer 
hardware i s  necessary f o r  t h e  opera t ion  of GRAPE, 

The g raph ica l  i n p u t  t a b l e t  i s  t h e  s o l e  i n p u t  medium, and 
t h e  tab le t  s t y l u s  i s  used t o  c o n t r o l  t h e  source program execut ion  
speed, t o  p o i n t  t o  messages on t h e  d i s p l a y ,  and t o  e d i t  source 
program code. T o  c o n t r o l  t h e  speed t h e  s t y l u s  i s  supported 
v e r t i c a l l y  on a l o w  mourit which runs  about e i g h t  inches  along 
t h e  c l o s e r  l e f t  s i d e  of t h e  f a c e  of t h e  t ab le t ,  as i n  F igure  2 .  
S l i d i n g  t h e  s t y l u s  forward and backward changes t h e  speed. N o  
information about t h e  speed i s  d isp layed  on t h e  screen .  The 
s t y l u s  rests loose ly  i n  t h e  r i n g  i n  F igure  3 ,  Although t h e  
s t y l u s  can be l i f t e d  from t h e  s l ide a t  any t i m e ,  t h e  o t h e r  i n p u t  
a c t i o n s  can only be performed a f t e r  t h e  s t y l u s  has  been moved t o  
t h e  STOP end of t h e  scale. Moving t h e  speed c o n t r o l  t o  STOP 
h a l t s  a l l  GRAPE a c t i o n  and so t h e  speed c o n t r o l  serves as a ready 
"panic  but ton ."  I n  f a c t ,  t h e  e n t i r e  des ign  of t h e  speed c o n t r o l  
i s  meant t o  provide s e c u r i t y  t o  t h e  user .  

A g r a p h i c a l  t ab l e t  s t y l u s  has a s w i t c h  i n  i t s  penpoint ,  and 
a s l i g h t  p re s su re  on t h e  s t y l u s  w i l l  serve t o  t r i g g e r  t h i s  
switch.  One p r i n t s  c h a r a c t e r s  on t h e  t a b l e t  by p res s ing  on t h e  
s t y l u s  and drawing t h e  c h a r a c t e r .  S t y l u s  p re s su re  i s  a l s o  used 
a s  p a r t  of t h e  speed c o n t r o l  scheme. 

T o  permit  w r i t i n g  on t h e  t a b l e t ,  t h e  speed l e v e r  mount must 
be on t h e  l e f t  side of t h e  t a b l e t  f o r  right-handed people and 
on t h e  r i g h t  s ide f o r  left-handed people.  

A s  w i l l  be seen i n  Sec t ion  V ,  GRAPE can a l so  be used with 
o t h e r  hardware conf igu ra t ions .  The source program execut ion  and 
t h e  execut ion func t ions  are n o t  s e r i o u s l y  a f f e c t e d  i f  a keyboard 
and a l i g h t  pen are s u b s t i t u t e d  f o r  t h e  g raph ica l  i n p u t  t a b l e t ,  

*A rear p ro jec t ed  t r a n s p a r e n t  t a b l e t  would be more appropr i a t e  
a l though t a b l e t  u s e r s  s e e m  t o  have l i t t l e  t r o u b l e  a d j u s t i n g  t o  
t h e  s i t u a t i o n  of w r i t i n g  on t h e  t a b l e t  and see ing  t h e  ' 'ink" on 
t h e  d i sp lay .  

8 



T T 

Figure 1.- Hardware Setup 

9 



Figure  2.- Tablet  F igure  3 , -  Speed Control 

10 



although editing becomes less natural. The light pen can be 
removed with a loss  primarily in the naturalness of the speed 
control, If a low speed storage display is substituted for the 
refresh display, some reworking of the display techniques is 
necessary, but GRAPE can still be used for effective program 
analysis 

2 - 1 . 3  Display Setup.- The setup of the information which 
is on the display during operation of GRAPE is in Figure 4. I 
have taken FORTRAN (ref. 6) as a typical HLL throuqhout the 
description of GRAPE because it is undoubtedly the most commonly 
used HLL. The bulk of the screen is taken up with about forty 
lines of the programmer's HLL program. Just to the left of the 
code and to the right of the statement labels, one character width 
of space is left for entering and displaying certain special 
symbols which affect how program execution will take place. On 
the left of the screen beside each displayed line of code is a 
line number. At the bottom of the screen is space for the 
displaying of HLL program variables. At the top of the screen 
messages are displayed appropriate to whatever is presently 
occurring. For example, when the HLL program is being executed 
the only message displayed is "GO". A typical display is shown 
in Figure 5. 

2.2 Source Program Execution 

2 . 2 . 1  Introduction and Example.- We now look at the informa- 
tion that is displayed as the user HLL source program is executing. 
During execution, the only message displayed at the top of the 
screen is GO. As long as that is the only message, the user is 
sure that his program is operating. At the bottom of the screen, 
information requested by the user may be displayed, as will be 
described in Section 2.3.  The source program code fills the rest 
of the screen. The entire screen except for the single source 
program statement which is presently being executed is displayed 
at a uniform brightness, That single statement, including its 
line number, is displayed more brightly. What in fact is displayed 
brightly is code which is desiqned to indicate the result of 
each source Statement, but which has as few symbols different 
from the original code as possible, and which requires as little 
human eye movement as possible. This technique places the smallest 
possible burden of interpretation on the user. Therefore, for 
example, brightening is used rather than cursors. Whenever it can 
be done, brightening is the sole change in the source code. For 
example, if during source program execution the statement 

GO TO 140 
is reached, then for the length of time which GRAPE is using to 
execute each source statement that line of code will appear as 

GO TC 1 

11 



GO 

4 1  

4 2  

5 3  

5 4  

5 5  

56  

5 7  

5 8  

6 4  

6 5  

- =  - -  A 

12 



GO 

30 

31 c 
36 

37 130 

38 

39 

40 

41 

42 

43 

SUBROUTINE DELETE 

nSPECIFICATIONS 

DUMMY = LINE1 

DUMMY = POINT (DUMMY) 

IF (VIZ(DUMMY) .EQ.3) GO TO 130 

IF (VIZ (DUMMY) .GE.4) CALL ERROR 

VIZ(LINE1) = 3 

CALL REGEN (0) 

RETURN 

END 

LINE1 = 184 
\ 

Figure 5.- Typical Display 

13 



2.2.2 Non-executable Statements,- GRAPE spends the same 
amount of time at a non-executable statement that it does at any 
other statement. One reason for doing this is that if non- 
executable statements were performed faster, the flow on the 
screen would not be as smooth and would be harder to follow. A 
more important reason is that the most frequent non-executable 
statements which are imbedded in executable code and reached 
many times during program execution are the comment statement and 
the CONTINUE. A user is as likely to be interested in looking at 
imbedded comment statements or a CONTINUE statement as he is at 
any other statement. 

line number and) the code which indicates their functions. Typi- 
cal Fortran statements as they would be displayed during execution 
are 

Non-executable statements are displayed by brightening (the 

- 
COMPUTE THE ANGULAR ACCELERATION 

ROWSUM(8) I COLSUM(15) HEAT(8,15) 

1 HEIGHT I WEIGHT 
and other specification statements 

40 (13, 2F6.1) 

120 

SETUP (INIT, MAXMUM, MINMUM) 

CUBIC (A,B,C,D) 
ALGOL (ref. 7) statements such as ARRAY or BEGIN are treated 
the same way. 

2.2.3 Expressions.- Before showing how other statements are 
displayed, we must look at how the evaluation of expressions is 
displayed. The evaluation of expressions takes more than one- 
execution cycle. When execution of an expression begins, all 
code on the screen physically below the statement containing the 
expression drops down one line, and the temporary results of the 
execution are displayed on that line just below the expression. 
The general rule for evaluation of expressions is that one level 
of operations is executed and displayed in each execution cycle. 
As a first example we will use the arithmetic expression to the 
right of the equal sign in the arithmetic statement 

I = J + K  

Execution of the above expression takes two execution cycles and 
happens as follows (if J is 7 and K is 4). The code on the dis- 
play screen 

14 



w = 2  

I = J + K  

M = I + W  

becomes 

w = 2  

I = J + K  

- 7 + 4  

M = I + W  

and then  becomes 

w = 2  

I = J + K  

11 

M = I + W  

- - 

T h e  fo l lowing  example, w i t h  subsc r ip t ed  variables, takes f o u r  
steps.  L e t  K = 6 ,  I N T ( 1 3 )  = 8 ,  I N T ( 1 7 )  = - 2 .  

T h e  code 

I = I N T ( K + 7 )  + I N T ( K + 1 1 )  

becomes 

I = I N T ( K 4 - 7 )  + I N T ( K + 1 1 )  

=: I N T ( 6 + 7 )  + I N T ( 6 + 1 1 )  

which becomes 

I = I N T ( K + 7 )  + I N T ( K + 1 1 )  

= I N T (  1 3 )  + I N T (  1 7  ) 

t h e n  

I = I N T ( K 4 - 7 )  + I N T ( K + 1 1 )  

8 + ( -2 1 - - 

1 5  



and then 

I = INT(K+7) + INT(K+11) 

In more complicated situations involving imbedded expressions, 
functions, and subscripts, the rule still holds that evaluation 
proceeds one level at a time. In the following example, only 
the steps in the evaluation are shown. J = 4: SQRT is a library 
function; X is a subscripted variable; IC = 7; x6 = 25; X5 = 3. 

The code I = J * (SQRT(X(K-1)) + X(K-2)) 

then = 4 *  ( 5 + 3  1 

then = 4 * (  8 ) 

and finally = 32 

The execution and display of a logical expression follows 
the same pattern as an arithmetic expression. Logical operators 
are treated as shown in the following example. LV1 and LV2 are 
logical variables. 

The code 

IF (LV1 .AND. LV2) GO TO 30 

may become 

IF (LV1 .AND. LV2) GO TO 30 

( t .AND. f 

which becomes 

IF (LV1 .AND. LV2) GO TO 30 

( f 1 

16 



Relational operators are treated similarly. 

The code 

IF (I .EQe J) GO TO 30 

may become 

IF (I .EQ. J) GO TO 30 

which becomes 

IF (I .EQ. J) GO TO 30 

One final example will demonstrate that a logical expression 
containing both kinds of operators and containing arithmetic 
expressions is no more complicated, only longer, Again just 
the changes from step to step are shown. I = 4, J = 9, K = 12. 

The code IF (I+J .GT. K .AND. I+J .LT. K+5) GO TO 30 

starts as (4+9 .GT. 12 .AND. 4+9 .LT. 12+5) 

becomes (13 .GT. 12 .AND. 13 .LT. 17) 

then t .AND. t 

finally t 1 
This expression took four steps to evaluate. If one were 

beset by an expression which took ten or twenty steps to evaluate, 
which was inside a program loop, and which was guaranteed to be 
correct, one could eliminate the tedious displayed evaluation in 
any of several ways. Using the condense feature described in Sec- 
tion 2.3,  one could set it to indicate only the results of the 
evaluation. Also using the condense feature one could remove the 
statement from the screen entirely. Finally, using the speed 
control, one could pass through the steps of the evaluation as 
fast as desirable. 

2.2.4 Arithmetic Statements.- Three things must be added to 
the previous description of arithmetic expressions in order to 
eva1;ate arithmetic- statements e 
arithmetic statement (the part to the right of the equal sign) 
is being evaluated to an arithmetic value, the part to the left 
is being evaluated to an address. One example of the full 
evaluation of an arithmetic statement will suffice to demonstrate 
this. 

While the expression part of an 

I = 6, J = 7 ,  Ag,7 = 10. 

17 



The code 

A(I+3,J) = A(I+3,J) + J + 1 
starts as 

A(I+3,J) = A(I+3,J) + J + 1 
A(6+3,7) = A(6+3,7) + 7 + 1 

becomes 

A(I+3,J) = A(I+3,J) + J + 1 
A( 9 ,7) =: A( 9 ,7) + 7 + 1 

then 

A(I+3,J) = A(I+3,J) + J + 1 
A( 9 ,7) = 10 + 7 + 1  

finally 

A(I+3,J) = A(I+3,J) + J + 1 
A( 9 ,7) =: 18 

If the variable to the left of the equal sign is an externally 
defined variable, that is, if it is in COMMON in FORTRAN or global 
in ALGOL, it is displayed brightly during the statement execution. 

On the matter of precision of arithmetic values during dis- 
played execution, GRAPE only gives two significant digits of 
accuracy to variables whose values are being displayed. In 
general, greater precision than one percent is not required 
during the moving evaluations and six or seven characters for 
each displayed value would make the evaluation hard to follow. 
There are other ways in GRAPE to display variables to complete 
accuracy as will be described in Section 2 . 3 .  If the value of 
a variable is between -99 and +99,  it is displayed as a two digit 
integer. If the value is outside this range it is displayed as 
two significant digits, an upward arrow to indicate exponentiation, 
and the appropriate power of 10. For example, 5321 is displayed 
as 53+02. 

Alignment of successive steps during evaluation of both 
arithmetic and logical statements must be considered. Whenever 
possible, in the displayed code parentheses and operators 
(arithmetic, relational, logical) appear directly under their 

18 



counterparts in the original code. Values replacing variables 
appear directly under the variables. Values replacing sub- 
expressions appear directly under the first operator in the sub- 
expression being replaced, as in the expressions evaluated earlier. 
When necessary;as when a variable such as X is replaced by a value 
such as 531.02, some or all of the expression will have to be 
moved horizontally to the right. As soon as possible in succes- 
sive evaluation steps, the alignment will revert to the original. 

2.2.5 Control Statements.- The display of these statements 
indicates the results of transfers or conditional transfers. 
Examples will be the clearest way to demonstrate this. The first 
example below is clear. In the second example let J equal 3. 
In the third example let M be statement 22.  In the fourth 
example e is an arithmetic expression which has been evaluated 
by the methods above to be exactly zero. The intensification of 
the appropriate statement number is the final step in the dis- 
played execution of the arithmetic IF statement. An ALGOL switch 
statement would also have the evaluation of an expression pre- 
ceding the indication of the transfer. 

Examples: G@ T@ 39 

G@ T@ (18, 46, I ! ,  46), J 

IF (e) 19, 14, 19 

More than any other group of statements the control state- 
ments show, even without the use of a display, how the operation 
of the source program is clearly defined within the source code 
itself. 

The ASSIGN statement is included here because of its associ- 
ation with control statements. It also is simply to display. 

ASSIGN 30 TP N 

2.2.6 Logical Statements.- In a logical IF statement, 
IF (e) S, the expression is evaluated as described in Section 
2.2.3 above. If the result is true the next execution cycle 
is the first cycle appropriate for statement S. If the result 
is false the next cycle is the first cycle for the statement 
immediately following the logical IF. 

Take the code 

110 c TEST F@R C@MPLETI@N 

111 IF (1NDEX.EQ.J) G@ T@ 40 

1 1 2  G@ T@ 50  

19 



If INDEX = 6, J = 7 this entire block, including line numbers, 
executes as 

118 

111 
112 

Then 

110 c 
I I  I 

112 

Then 

110 c 
I l l  

112 

Finally 

110 c 
111 
I12 

TEST F@R C@PIPLETIjdN 
IF (1NDEX.EQ.J) GP T@ 40 
Gjd Tjd 50  

TEST FPR C@MPLETIjdN 
IF (1NDEX.EQ.J) G@ Tjd 40 

(6 .EQ.7) 
Gjd T@ 50 

TEST FPR CjdMPLETIjdN 
IF (1NDEX.EQ.J) Gjd Tjd 40 

( f 1 
Gjd TP 50 

TEST FPR CgMPLETIgN 
IF (1NDEX.EQ.J) Gjd Tjd 40 
Gjd Tjd 5 

If INDEX = 7, J = 7 the block executes as 

TEST FjdR CjdMPLETIgN 
111 IF (1NDEX.EQ.J) G@ TP 40 
112 Gjd T@ 50 

Then 

110 c TEST FjdR CgMPLETIjdN 
1 1  IF (1NDEX.EQ.J) Gjd T@ 40 

7 .EQ.7 
112 Gjd TJZI 50 

20 



Then 

110 c TEST F@R CfdMPLETIgN 

IF (INDEX-EQ-J) G@ T@ 40 

t 

112 G@ T@ 50  

Finally 

110 c TEST FgR C@MPLETI@N 

I 1  IF (1NDEX.EQ.J) G@ T@ 40 

112 G@ TJb 50 

2.2.7 Iterative Loops.- Automatic loops also have simple 
display versions. For purposes of display all three steps 
inherent in loops (initialize, increment/modify, test) take place 
at the statement which defines the loop, even though compilers 
often put the latter two at the end of the loop. This is the 
natural way to think of loop execution. 

As long as source program execution is within a DO loop, 
or either type of ALGOL FOR loop, the value of the index variable 
remains displayed beside the loop statement. Thus 

D@ 30 I = 1,40,1 14 

This statement is executed each time through the loop by incre- 
menting the index variable, I. The final execution of t h i s  
statement sets I to 41, and the next statement executed is the 
one after statement 30. Checking to see if a transfer statement 
has taken execution outside the range of a program loop, so that 
the value of the loop can be removed from the screen, is something 
which compilers rarely do, but which is valuable within the slow 
compilation and execution scheme used by GRAPE. 

2,2.8 Subroutine Calls.- The execution of a call to a sub- 
routine takes two display cycles. The actual execution of the 
subroutine takes place between the two cycles. During the first 
cycle the code physically below the subroutine call drops down 
one line, as in evaluation of an expression, and on the display 
appears the present values of the variables being used as inputs 
to the subroutine. Thus, if the first, second and third arguments 
in the following example were inputs to subroutine NEWTON, the 
third being a logical variable, the code 

21 



CALL NEWT@N (@LDVAL, 5.3, L@GVAR, NEWVAL, ITERN@) 

would appear during the first execution cycle as 

CALL NEWTPN (@LDVAL, 5.3! LPGVAR, NEWVAL, ITERN@) 

TO NEWT@N ( 1 r t  , NEWVAL, ITERN@) 
During the second execution cycle, after the execution of the 
entire subroutine at full computer speed, the code on the display 
drops down one more line and the results of the subroutine 
execution are displayed on the next line. 

CALL NEWTPN (@LDVAL, 5.3, L@GVAR, NEWVAL, ITERN@) 

0 NEWT@N ( I r f  I NEWVAL, ITERN@) 

NEWTPN (@LDVAL, 5.3, L@GVAR, 81 I 30 ) 

The display of both TO and FROM lines simultaneously permit the 
user to see quickly if any variables have been used for both 
input to and output from the subroutine or if any variables have 
been used for neither. These situations often, though not always, 
indicate incorrect subroutine usage. 

Actually, matters are not quite so simple with subroutine 
calls. First, only single valued variables will have their 
values displayed. For multi-valued variables such as entire 
FORTRAN arrays the name of the array is intensified in the TO 
and/or FROM lines. The same is done if the argument is a function 
name. As with the precision of displayed variables, the capabil- 
ity to display entire arrays is discussed in later sections. 
Second, if one of the arguments is an expression, the expression 
is evaluated in the manner of 2.2.3 above before the subroutine 
is called. Third, a compiler cannot tell which arguments 
in a call are inputs to the subroutine." The best way to handle 
this is to permit the user to specify to GRAPE which arguments 
in each subroutine are inputs. This can be done in the statement 
immediately following the SUBROUTINE statement, and it can be 
done in a comment statement so that the normal HLL compiler will 
still accept the source program. However since this, or any 
other such scheme, involves additions to the HLL code or to some 
"system cards," there is a default condition. With no information 
to the contrary, GRAPE displays a l l  arguments as input arguments. 

*This is true for FORTRAN but not true for some other higher 
level languages. 

22 



Fourth, arguments returned from subroutines pose a similar 
problem. If the subroutine were being executed interpretively 
GRAPE could keep track during execution of the subroutine of 
which arguments were modified. If, howeverp the subroutine is 
to run at full machine speed, and if, as is often true, the argu- 
ment transfer vector is used as a set of indirect addresses, 
GRAPE has no way of knowing which arguments are returned. The 
solutions offered for the input case can be used here, and in 
the default case all arguments are displayed as outputs. All 
and only the output arguments should have changed in value be- 
tween the two cycles. 

The above implies that the code for subroutines does not 
normally appear on the screen. How to bring the subroutine onto 
the screen is discussed in 2,3. Display of the SUBROUTINE 
statement was given in 2.2.2 above. The RETURN statement is 
displayed by intensifying the whole word 

2.2.9 Input/Output.- Most input and output presents no 
special problems to GRAPE. Execution of an input or output 
statement takes one execution cycle, unless subscript evaluation 
or other expression evaluation occurs first. During the cycle 
devoted to the input/output itself, code below the 1/0 statement 
drops down one line and the values of any single valued variables 
which are being read or written are displayed. The device type 
is also displayed. 

The code 

WRITE (Np20) 11, 12, (MAT(K), K = 1,10) 

might become 

WRITE (N,20) 11, 12, (MAT(K), K = 1,lO) 

I (MAT(K), K = 1,lO) 

At the same time, the input or output actually occurs. The 
display of output arrays can be requested as in 2 .3*  

If the 1/0 device is fast enough, the data transfer may take 
place in less than one GRAPE execution cycle. In that case there 
is no delay in program execution. However, if the input or out- 
put takes longer, e.g., if the input is from a keyboard or a 
teletype, GRAPE waits for completion of the I / O .  The values of 
variables on the intensified line of an input statement cannot, 
of coursel be filled in until the input has taken place. No 
values are displayed for binary input/output, as opposed to 
character 1/0 

23 



The one form of input/output which presents problems is 
display output, since the display screen is already filled with 
GRAPE information. (Graphical tablet input does not cause the 
same difficulties since GRAPE does not use the tablet during the 
execution of a source program input statement, except as described 
in 2.2.10.) The frequency of occurrence of display output 
is increased by the fact that when one is analyzing a program one 
might well want to do all output on the display, rather than on 
a relatively slow teletype or on a non-readable magnetic tape. 
This situation is discussed and solutions presented in 2.5. 

2.2.10 Speed Control and Related Statements.- The speed 
control hardware has already been described. By sliding the 
lever back and forth the user adjusts the speed, in execution 
cycles per second, at which his source program operates. Most 
types of statements take one execution cycle to execute. Others, 
such as subroutine calls, take two cycles to execute. The 
existence of either arithmetic or logical expressions within 
statements increases the number of execution cycles used to dis- 
play the statement in execution. Experimentation has shown that 
the slowest speed which is useful for continuous execution is 
one cycle every four seconds, Speeds slower than this can be 
induced by single cycle execution. When the lever is at the near 
end of the slide (Figure 3 )  execution stops. Pressing down on 
the lever while it is in that position, thus tripping the stylus 
switch, causes the execution of one cycle. This action can be 
repeated as often as desired. Moving the lever away from the 
STOP position restarts continuous execution. 

The fastest speed which now appears useful if one is watching 
the execution is forty times as fast, ten cycles per second, and 
occurs when the lever is at the end of the slide away from STOP. 
That speed is too fast for the user to see individual statements 
execute, but cne can see the area of the source program that is 
being executed, and one can see changes in information being dis- 
played at the bottom of the screen. Speeds faster than this can 
be induced by pressing down on the lever while it is at the fast 
end of the scale. This completely eliminates delay between 
execution cycles, although the results of each statement are 
still displayed on the screen. Nothing intelligible can be seen 
at this speed; one would use it only if he knew there was a 
statement in the program such as teletype input or a breakpoint 
which would cause execution to stop. Even with no GRAPE delay, 
as long as each source statement is being executed for display, 
execution will be two orders of magnitude slower than if the 
statement had been compiled by a "real" compiler. For this and 
other reasons there is a way to make sections of the source pro- 
gram run even faster. It is described in 2.3. 

Intermediate positions of the speed lever cause intermediate 
execution speeds. None of the speeds except STOP are marked on 
the speed control. 

2 4  



As implied above there are source program statements other 
than input which cause execution to cease." When execution 
reaches one of these statements, continuous source program 
execution stops regardless of the position of the speed lever, 
and the message at the top of the screen is changed 

from GO to STOP 

The statement which caused the halt remains intensified. The 
user's next actions will depend on the nature of the statement. 

If the statement is a temporary halt, the user can continue 
with execution by pulling the speed control to the STOP position 
and then pushing it away. Alternatively he could move it to 
STOP and then perform the functions described in the rest of 
Section 2. The FORTRAN PAUSE statement is intensified as 

PAUSE 

If the statement is a permanent halt, all the user can do 
is move the speed control to STOP and perform some of the GRAPE 
functions described below. The two FORTRAN statements which are 
permanent halts are also intensified by having the entire state- 
ment be brightened. They are 

STOP AND END 

2.3 Execution Functions 
2.3.1 Changes with Execution Stopped. - No editing or 

program modification can be done while the HLL program is in 
the process of executing. However, when the speed control is 
pulled to STOP, changes to the program can be made. In 2 . 3  
changes are described that affect the manner in which the 
HLL program is executed or the manner in which it is display- 
ed. Changes to the HLL code itself will be described in 
2.4. Some of the functions introduced are familiar ones, 
such as breakpoints in the program, but even there the 
method of invoking the function will be new. 

stopped. When execution is started again they leave no trace. 
The first of these is the null function: simply pushing the 
speed control away from STOP. When this is done execution of the 
HLL program continues from exactly where it had stopped. Since 
the slow end of the speed control is nearest STOP, no great 

Some of these functions take their effect while execution is 

*These statements were used frequently on user operated computers. 
With the advent of batch processing and time-sharing they became 
less useful. GRAPE returns the good parts of user operated com- 
puters, including these statements. 

25 



changes suddenly happen when the control is moved. Therefore. 
one can easily execute just a statement or two, then stop and 
think. By pressing down the stylus, and causing single cycle 
execution, one has even finer control over execution. This is 
a good time to note that the execution of a statement does not 
actually occur until the statement has finished its display 
cycles. This is clearly true for transfer statements, but it is 
also true that as long as an arithmetic statement is still being 
displayed, even if the speed is at STOP, the value of the left 
side variable has not yet been changed. The exceptions to this 
are the subroutine call, which is executed between the TO and 
FROM cycles, and input/output statements, which are executed 
while they are displayed. 

It may be that one wishes to start execution at some state- 
ment in the HLL program other than where execution stopped. One 
reason might be that the section of code about to be executed 
cannot be executed properly; perhaps it has not been completely 
written, or perhaps it requires some input which is not yet ready. 
Another reason is that as a result of watching the execution, one 
has stopped execution, has made some changes to the code, and now 
wishes to rerun the few statements which were changed. The second 
execution function permits this. To start execution at a 
particular statement on the display face, one draws an arrow to 
that statement in the column reserved for execution functions 
(Figure 4). Execution immediately begins at that new statement, 
but since the speed is at STOP, only the first execution cycle 
will take place. If, while execution is stopped, one draws the 
arrow indicated below: 

118 IF (I.NE.3) GO TO 20 

119 +J = 16 + I 
120 K = O  

121 GO TO 45 

122 20 CONTINUE 

then execution will begin at line 119 and the display will read 

118 IF (I.NE.3) GO TO 20 

119 J = 1 6 + I  

J = 1 6 + 3  

120 K = O  

26 



1 2 1  GO TO 4 5  

1 2 2  20  CONTINUE 

Moving the  speed c o n t r o l  away f r o m  STOP w i l l  cont inue  wi th  t h e  
execut ion  a t  l i n e  1 1 9 .  Since a l l  s ta tements  t a k e  a t  least  one 
cyc le  t o  execute ,  no harm i s  done by p o i n t i n g  a t  t h e  wrong l i n e .  
(Remember t h a t  t h e  g r a p h i c a l  i n p u t  s t y l u s  which i s  being used 
f o r  w r i t i n g  i s  a l s o  the  speed c o n t r o l  l e v e r ) . "  

There i s  no need f o r  GRAPE t o  eve r  d i s p l a y  t h e  arrow. The 
i n s t a n t  t h a t  GRAPE knows an arrow was drawn, t h e  new s ta tement  
w i l l  be p rope r ly  i n t e n s i f i e d .  While t h e  arrow i s  being drawn, 
t he  computer o p e r a t i n g  system must provide t h e  necessary feedback 
t o  t h e  u s e r  t o  h e l p  h i m  draw h i s  c h a r a c t e r s  p rope r ly  (see 
Sec t ion  I V ) .  

Whenever t h e  speed i s  STOP, no t  only does t h e  d isp layed  
message, GO, change t o  STOP, bu t  other messages appear a t  t h e  
t o p  of t h e  sc reen  as i n  F igure  6 .  These messages a r e  a l l  func- 
t i o n  bu t tons ;  touching any of them wi th  the  t a b l e t  s t y l u s  w i l l  
cause an a p p r o p r i a t e  a c t i v i t y  t o  occur .  The f u l l  set  of messages 
f o r  t h i s  s i t u a t i o n  can a l s o  be seen  i n  t h e  U s e r ' s  Manual 

( 2  6 )  next  t o  "speed set t o  STOP e 

T h e  t h i r d  execut ion  f u n c t i o n  which a f f e c t s  the  HLL program 
only whi le  execut ion  i s  stopped i s  ROLL. Only f o r t y  o r  so l i n e s  
of program code are v i s i b l e  on the  sc reen  a t  any one t i m e .  For 
longer  programs there must be a way t o  g e t  s p e c i f i c  s e c t i o n s  of 
t h e  source  program on t h e  sc reen  so t h a t  one can e d i t  t h e m  o r  can 
perform execut ion  f u n c t i o n s  such as " s t a r t  here" on them. T h e  
message +ROLL+ permi ts  t h i s .  P r e s s i n g  t h e  down arrow w i t h  t h e  
s t y l u s  r o l l s  t h e  program p a s t  t h e  d i s p l a y ,  d i sp l ay ing  code c l o s e r  
t o  t h e  end of t he  program. A s  long a s  t h e  arrow i s  pressed ,  t h e  
program keeps r o l l i n g ,  except  t h a t  once t h e  end of t h e  program i s  
on t h e  sc reen  t h e  down arrow has no e f f e c t . * *  P res s ing  t h e  up 
arrow has t h e  oppos i t e  effect ;  t he  code r o l l s  towards t h e  be- 
ginning of t h e  program.*** During source program execut ion  t h i s  

*The choice  of w r i t t e n  symbols f o r  t h i s  and t h e  o t h e r  execut ion  
f u n c t i o n s  i s  samewhat a r b i t r a r y ,  s i n c e  these func t ions  are new, 
whereas t h e  symbols f o r  t h e  e d i t i n g  f u n c t i o n s  a r e  t h e  s tandard  
typographica l  ones.  An arrow f o r  ' ' s t a r t  here" seems appropr i a t e .  

**If ROLL i s  d i f f i c u l t  t o  understand,  one can t h i n k  of t he  credits 
r o l l i n g  a c r o s s  t h e  sc reen  a f te r  a t e l e v i s i o n  show. 

***Which way an arrow moves a p i c t u r e  depends on whether one 
t h i n k s  of t h e  sc reen  as moving over  t h e  p i c t u r e ,  o r  of t h e  p i c -  
t u r e  a s  moving under t h e  screen. I n  t h e  p r e s e n t  s i t u a t i o n ,  t h e  
former s e e m s  more s a t i s f y i n g .  

27  



STOP RESTART SAVE TRASH UNUSED +ROLL+ 

Figure 6.- Display Messages When The Speed Is At STOP 

28  



is handled automatically, When control transfers to a program 
statement which is not presently on the screen, the window moves 
to the new part of the program making that statement the third 
line on the screen. 

The rate of the roll depends on where along the stem the 
arrow is touched. The end at the arrow tip is the fast end; the 
program will roll at about forty lines per second, This high 
speed is necessary so that one can get to the other end of a 
long program. Touching the end away from the tip rolls the pro- 
gram at about one line per second. Intermediate spots along the 
stem cause intermediate rates, As with the other execution 
functions, no harm is done if the function is used incorrectly, 
and so no special instruction in the use of ROLL is necessary. 
The other arrow can be used to return the earlier picture. Note, 
incidentally, that if the speed control is pushed away from STOP 
after a long roll has taken place, execution still begins where 
it had halted, and the correct page of display code is brought 
onto the display. 

One other message, the fourth execution function, affects 
what section of code is displayed on the screen. Touching RESTART 
puts the first forty lines of the program on the screen. It 
also resets all program variables to their initial values, usually 
"undefined". This is the only function in GRAPE which has an 
immediate irreversible effect. To prevent accidental disaster, 
when RESTART is pressed the screen goes blank except for the 
question: 

DO YOU REALLY WANT TO RESTART 

Touching the NO box returns the previous picture. 

A button with a different function is the SAVE button, 
This button terminates GRAPE operations, saves the present 
version of the HLL program in the computer file system, and 
returns control to the computer operating system. SAVE calls 
the operating system in such a way that the present status of 
the machine is not destroyed and GRAPE can be restarted in 
exactly the situation in which it was terminated. If GRAPE plus 
appropriate input/output operating routines are the sole programs 
in the computer and there is no operating system, control re- 
mains in GRAPE after the source program is saved. 

The final two function buttons displayed when the speed con- 
trol is set to STOP are used in conjunction with editing. Details 
of their use will be described in the section on editing, 

29 



2,3.2 Changes During Execution.- Now s e v e r a l  func t ions  
which a f f e c t  t h e  program d i s p l a y  as execut ion i s  t ak ing  p l a c e  
w i l l  be examined, The f i r s t  of t h e s e  i s  t h e  break l i n e .  Drawing 
a hook over a l i n e  number, t h u s  

F (I+3,GTeJ*7)TBAR=TBAR+1 

w i l l  cause execut ion  t o  s t o p ,  whenever t h a t  s ta tement  i s  about 
t o  be executed. The break l i n e  and t h e  l i n e  number are br ightened .  
The GO a t  t h e  t o p ' o f  t h e  sc reen  changes t o  STOP. I n  p r i n c i p l e ,  
t h i s  i s  s i m i l a r  t o  i n s e r t i n g  a temporary h a l t  s t a t emen t ,  such as 
FORTRAN PAUSE, be fo re  t h e  given s t a t emen t ,  bu t  t h e  break l i n e s  
a r e  easier t o  see and e l i m i n a t e  than are t h e  PAUSE'S ,  To con- 
t i n u e  execut ion  a f t e r  a s t o p  because of a break l i n e ,  one p u l l s  
t h e  speed l e v e r  t o  STOP and then  pushes it away. Any number of 
break l i n e s  can be i n s e r t e d  i n  a program. Two consecut ive 
execut ion c y c l e s  i n  a program are shown below. 

1 1 9  I = I + l  

1120 4 0  M = I * 2 + SQRT (J) 

and 

118 GO TO 4 0  

1 1 9  I = I + l  

M = I * 2 + SQRT (J) 

The next  execut ion func t ion  which can be performed whi le  
t h e  speed i s  a t  STOP i s  t h e  s e t t i n g  and d i sp lay ing  of HLL program 
v a r i a b l e s  a t  t h e  bottom of t h e  sc reen ,  (Figure 4 ) .  I f  WEIGHT i s  
a s i n g l e  valued program v a r i a b l e  and one w r i t e s  

WEIGHT = 65.25 

a t  t h e  bottom of t h e  sc reen ,  t hen  WEIGHT i s  set t o  t h a t  va lue .  
I f  one w r i t e s  

HEIGHT (12,3)  = 

without  supplying a va lue ,  t hen  GRAPE f i l l s  i n  t h e  p r e s e n t  va lue  
of HEIGHTl2 I t o  i t s  f u l l  computer p r e c i s i o n .  

H E I G H T  ( 1 2 , 3 )  = .32750+-04 

30 



One may wonder how the system knows that an individual has stopped 
writing at an equal sign and is therefore requesting the value of 
a variable rather than supplying one. While teletype input often 
uses a special character, such as carriage-return, to indicate 
the end of input, graphical input tablet character recognition 
typically uses timing information, A significant delay indicates 
that input is complete. But nothing happens to the user who in- 
advertently delays before writing his new value. As will be seen 
in 2.4, overwriting is the standard way of changing information 
which is on the screen. 

With regard to the example above, GRAPE could understand the 
mathematical notation for subscripts, but it is wiser to have the 
variable look just as it does in the programming language, and 
subscript notation is not used in FORTRAN, All the current HLL 
have forced a linearity on the basic two dimensionality of mathe- 
matical statements. ALGOL (and PL/I) have the additional inherent 
two dimensionality of statements containing strings of ELSE 
clauses. "If X1 is true do Yll ELSE if X2 is true do Y2r ELSE..." 
GRAPE is perfectly well suited for a statement oriented two 
dimensional higher level language, and so is the graphical input 
tablet, as Andersen (ref., 8) has shown, 

After program execution is continued these variables remain 
displayed at the bottom of the screen and their values are changed 
on the screen as execution of the program changes them. If a 
GRAPE user were looking for the place in a program where the value 
of a variable changed from a small integer to a large one, he 
could display the variable on the screen and then run the program 
at a high speed until the variable changed value. Displaying 
and setting the values of entire arrays, rather than variables 
with a single value, involves the same problems that display 
output during execution involves, and it is treated in 2.5. 

The final execution function is the ability of the user 
to condense source program code. Condensing is used to remove 
from the screen code which is no longer interesting. Drawing a 
circle around a set of contiguous line numbers reduces all the 
encircled lines to a single line on the screen. When lines of 
code are condensed, the first line remains on the screen with a 
condense square, 17, in the special character column 
The code 

123 I = 14 

124 J = 15 

125 K = 16 

31 



1 2 6  L = 1 7  

1 2 7  M = 1 8  

when t h e  user  draws 

123 I = 1 4  

J = 15 

K = 1 6  

L = 1 7  

1 2 7  M = 1 8  

be comes 

123 I = 1 4  

1 2 4  n J  = 15 

1 2 7  M = 1 8  

Two important  purposes are served by condensing. F i r s t ,  
code which t h e  use r  i s  no t  i n t e r e s t e d  i n  see ing  d isp layed  i s  
removed from t h e  sc reen ,  though no t  from t h e  program, thus  in -  
c r eas ing  the  amount of u s e f u l  information which can be d isp layed  
a t  one t i m e .  Second, t h e  code which i s  removed from t h e  sc reen  
i s  executed by t h e  computer a t  f u l l  computer speed, an i n c r e a s e  
of up t o  1 0 0 0 0  pe rcen t  over even t h e  fastest execut ion t h a t  s t i l l  
involves  changes t o  t h e  d i s p l a y  screen .  

During execut ion  t h e  condense square b r igh tens  while  
execut ion i s  t ak ing  p l ace  i n  t h e  l i n e s  which are n o t  on t h e  screen .  
A s  Long a s  t h e  code which i s  hidden from t h e  screen  i s  n o t  very 
t i m e  consuming, there i s  no p e r c e p t i b l e  de lay  from the  d i s p l a y  
of execut ion  of t h e  l i n e  w i t h  t h e  condense c h a r a c t e r  t o  t h e  d i s -  
p lay  of execut ion  of t h e  next  l i n e .  I n  t he  above example, three 
execut ion cyc le s  would be needed t o  execute  t h e  program w i t h  t h e  
condense block.  The second c y c l e  would i n d i c a t e  how l i n e  1 2 4  
was t o  be executed,  bu t  l i n e s  125 and 1 2 6  would a l s o  be executed 
immediately fol lowing t h i s  cyc le .  

Suppose t h a t  there w e r e  a f i f t y  l i n e  program i n  which appeared 
t h e  twelve l i n e s  of F igure  7 .  Dispday of t h i s  s e c t i o n  of code 
t a k e s  over 25 pe rcen t  of t h e  s c r e e n ' s  c a p a b i l i t y  of f o r t y  l i n e s .  
Worse y e t ,  it involves  t h e  execut ion  of nea r ly  f i v e  thousand 
s e p a r a t e  s t a t e m e n t s ,  some of which t a k e  more than  one c y c l e  t o  
d i s p l a y .  Even w i t h  no de lay  a t  a l l  between execut ion c y c l e s ,  

32 



14 

25 

I N T E G E R  A ,  B C 

C I N I T I A L I Z E  A L L  ARRAYS 

DO 20  I = 1 , 1 0 0  

A ( 1 )  = 0 

B ( 1 )  = 0 

C ( 1 )  = 0 

DO 15 J = 1,lO 

D ( 1 , J )  = 1 . 0  

E ( 1 , J )  = -1 .0  

1 5  CONTINUE 

20  CONTINUE 

DO 30  R A D I U S  = 1,50 ,2  

Figure  7 . -  C o n d e n s i n g  A Program Loop 

33  



t h i s  s e c t i o n  of code could t a k e  over  a minute (100  t i m e s  as long 
as a "normal" 1 0 0 0 0  s t a t emen t s  pe r  second) t o  execute  and d i s p l a y .  

By drawing t h e  i n d i c a t e d  circle around t h e  l i n e  numbers, 
t h e  code i s  reduced t o  

14 INTEGER A I B, C 

1 5  C D I N I T I A L I Z E  ALL ARRAYS 

25  D@ 30 RADIUS = 1, 5 0 ,  2 

Now t h e  e n t i r e  execu tab le  p a r t  of t h e  f i f t y  l i n e  program f i t s  on 
t h e  d i s p l a y  screen, and t h e  whole a r r a y  i n i t i a l i z a t i o n  t a k e s  
p l a c e  i n  one execut ion  c y c l e .  Between t h e  s i n g l e  execut ion  cyc le  
of t h e  comment s ta tement  and t h e  s i n g l e  execut ion  cyc le  of t h e  
DO s t a t emen t ,  t h e  a r r a y s  a r e  i n i t i a l i z e d .  However, i f  t h e  code 
hidden from view involved a m i l l i o n  c a l c u l a t i o n s ,  then  it would 
t a k e  longer  than  a b r i e f  moment t o  execute  t h a t  hidden code. 
For t h e  t i m e  t h a t  t h e  condensed code was ope ra t ing  t h e  computer, 
t h e  condense l i n e  would be i n t e n s i f i e d  a s  

15 C I N I T I A L I Z E  ALL ARRAYS 

I f  execut ion  reaches  a h a l t ,  e . g . ,  a PAUSE s t a t emen t ,  
i n s i d e  t h e  condensed code, t h e  message a t  t h e  top  of t h e  sc reen  
changes from GO t o  STOP, j u s t  a s  i f  t h e  s ta tement  w e r e  d i sp l ayed .  
The u s e r  could cont inue  execut ion ,  j u s t  a s  i f  t h e  s ta tement  w e r e  
d i sp l ayed ,  by moving t h e  speed c o n t r o l  t o  STOP and then  away 
from it. I f  he d i d  n o t  know why execut ion  had s topped,  he could 
p u l l  t h e  speed t o  STOP and then  make t h e  hidden code appear by 
c r o s s i n g  o u t  t h e  condens quare ,  t h a t  i s ,  by "e ra s ing"  o r  
scrubbing over  it, a s  i n  e (Breakl ines  a l s o  a r e  removed by 
scrubbing over  them.) Because of t h e  v a r i a b i l i t y  i n  execut ion  
t i m e ,  when an input /output  s ta tement  executes  i n s i d e  a condensed 
block t h e  code below t h e  condense l i n e  drops down, t h e  inpu t /  
o u t p u t  s ta tement  appea r s ,  and it i s  executed v i s i b l y .  

Statements  which t r a n s f e r  c o n t r o l  t o  t h e  middle of a condense 
b lock ,  e . g , ,  GO TO n where s ta tement  n has  been condensed, work 
as might be expected;  t h e  l i n e  which i s  i n t e n s i f i e d ,  and brought 
on to  t h e  sc reen  i f  it i s  n o t  a l r eady  there,  i s  t h e  condease l i n e  
a t  t h e  beginning of t h e  block.  A s  t h a t  imp l i e s ,  condense b locks  
remain condensed even when t h e  whole s e c t i o n  of t h e  program i s  
o f f  t h e  sc reen .  There can be any number of condense blocks i n  
a program. Furthermore,  condense b locks  can inc lude  o t h e r  con- 
dense b locks ,  

34 



10 1 = 1  

J = 2  

K = 3  

L = 4  

14 M = 5  

becomes 

10 1 = 1  

11 D J = 2  

14 M = 5  

and 

becomes 

In this case 

10 +&I= 1 

becomes 

1 0  1 = 1  

11 B J = 2  

1 4  M = 5  

However, if the first line in a new condense block is already 
a condense line, only one condense block results. 

10 1 = 1  

nJ = 2 

M = 5  

35 



becomes 

10 1 = 1  

11 m J =  2 

and if the square is crossed out 

10 1 = 1  

11 J = 2  

1 2  K = 3  

1 3  L = 4  

14 M = 5  

Two final remarks about condensing must be made. Subroutine 
calls initially appear as condense lines, and the execution of 
subroutines takes place in two cycles as indicated in 2.2. 

If one wishes to see the subroutine execute, one crosses out the 
condense square and the subroutine code appears under the call. 
The execution of the subroutine occurs in normal GRAPE fashion 
between the TO and FROM cycles of the subroutine call. Subroutines 
may themselves contain condense blocks, such as other subroutine 
calls. 

Single statements can be condensed by drawing a circle 
around the single line number. The effect of condensing a single 
statement is that it executes in one cycle, and statements con- 
taining complicated expressions may warrant such condensing. If 
one condensed the following statement by drawing a circle around 
the 160 

160 A ( K + 3 ,  J) = J* (SQRT (X ( K - 1 )  ) + X (K-2) ) 

the single cycle of execution might appear as 

160 n A  ( K + 3  ,J) = J* (SQRT ( X  ( K - 1 )  ) + X ( K - 2 )  ) 

A( 10,4) = 32  

If only that one line is condensed the next line on the display 
screen would have the line number 161, hence the user would know 
that the condense block was just a single line. 

36 



2.4 Editing Functions 

2 .4 .1  Changing Code. - Changing the actual source program code 
can be accomplished whenever the speed control is in the STOP position. 
GRAPE itself-is not an edit0.r. Rather, it is the capabilities-of the 
graphical input tablet with sufficient supporting software that make 
the editing feature of GRAPE so~powerful. Editing a page of text with 
a tablet is even easier than annotating a page of text with a pencil 
for someone else to edit. To change letters or words in a line, one 
simply writes over them. To insert letters or words in a line, one draws 
a caret and inserts the information. To insert a new line draw a > 
between the line numbers where the new line is to go: the code on the 
screen separates to allow writing of the new line. It has been noted thai 
breaklines and condense blocks can be removed by crossing them out. 
Letters or words can be removed the same way. An entire line can be 
deleted by crossing out the line number.* Some examples follow. 

If the code looks like this 

15 G@ T@ 20 

16 10 I = J + 2  

17 K = 1 4  + M/2 
18 L = 26 

and the user crosses out the 17 

15 G@ T@ 20 

16 10 I = J + 2  

434 K = 1 4  + M/2 
18 L = 26 

the code becomes 

15 G@ T@ 20  

16 10 I = J + 2  

17 L = 26 

*I have taken these ideas from Project GRAIL at Rand Corporation, 
one of the sophisticated users of graphical tablets. They are 
the designers of the Rand Tablet, the first commercially available 
version of the graphical input tablet. 

37  



Line 16 could be changed to read 10 I = J+4-M by just writing 
the new code on top of the old 

16 10 

It is not necessary to indicate in any way that changes are about to 
be made, or indicate which line is to be edited. One simply writes 
the changes. If in the above example one wished to add a line between 
lines 15 and 16 one would use a > 

G@ T@ 20 

I = J + 2  
j5 
16 1 0  

1 7  L = 26 

The code becomes 

15 Gg T@ 20  

16 

1 7  1 0  I = J + 2  

1 8  L = 26 

and one can write whatever code he wants on line 16. These features 
have all been used by Project GRAIL. They are the common editing 
features of A , > , w a n d  overwriting. One could get the value of 
some function of the program variables by inserting an arithmetic 
statement anywhere on the screen, executing it, then deleting it. 
Besides the statement itself, all one writes is 9 ,- ,,,,.,-a 

A fifth common technique which is used in GRAPE is moving a line 
by drawing an arrow from it to where it should go. 

14 A = l  

18 E = 5  



becomes 

14 A = l  

15 B = 2  

16 c = 3  

17 D = 4  

1 8  E = 5  

One can also move a block of lines easily 

14 A = l  

The circle condenses the lines, the arrow moves them. One may then 
cross out the condense square 

14 A = l  

15  B = 2  

16 D = 4  

1 7  E = 5  

These five functions are all simple and are all common editing 
techniques. The thing to realize is that indicating the changes 
actually produces the changes. 

There are many other features for changing code which should 
be found in a good general purpose editor, such as locate-by-context 
or change-everywhere. But complex code modification belongs in the 
editor, not in GRAPE. See, for example, reference 9 Section AH.3. 
The five features above are all that are needed for easy line by line 
editing. It is not unreasonable to suppose that, with a good oper- 
ating system, the GRAPE user will find it simple to use the available 
general purpose editor on his HLL program. 

2.4.2 Checking Code. - Before touching on other types of editing, 
let us state a point that is probably already clear about line numbers: 
they are not permanent. The lines in the main program are numbered in 

39 



order. Any deletion or addition changes the line numbers which follow. 
Line numbers serve two functions in GRAPE. The first is to mark the 
lines that are on the display screen, Markings on the left of the 
screen provide a convenient place to indicate insertion of a line, 
deletion of a line, condensing of lines, particularly since HLL source 
statements do not have to be aligned vertically. For this a mark such 
as @ would serve. But actual line numbers can also be used to rough- 
ly identify sections of a very long program. 
statement is in the vicinity of line 200, 
cation of a line number with a particular statement does not provide 
additional capability and so the machinery necessary to provide it has 
not been included in GRAPE. 

One may remember that a 
However, permanent identifi- 

We have already seen how the values of single-valued variables 
can be displayed at the bottom of the screen. To set the value of a 
variable write 

VARIAB = 38.6 

To display the present value write 

VARIAB = 

Furthermore, if the speed is S T O P ,  the value of a variable being 
displayed can be changed by writing the new value over the old. 
example, 

For 

VARIAB = $4 
This will reset VARIAB to 11. The display of a variable can be removed 
from the screen by crossing it out. Similarly, a new variable can be 
displayed in place of one already there by writing the new name over 
the old. 

@ = 29.1 

The question arises as to how many variables can be displayed 
at one time at the bottom of the screen, The answer shows the 
flexibility of GRAPE and computer driven displays. When GRAPE be- 
gins operating, only one line is reserved for the display of 
variables. The rest of the screen, except for the message area 
at the top, is available for the HLL program. This line is divided 
into fourths as in Figure 8. As long as three or fewer variables 
are being displayed, just the one line is taken. As soon as the dis- 
play of a fourth variable is requested, the bottom line of the HLL 
program disappears from the screen and a second line of four display 
locations is added as in Figure 9.  After four more displayed 
variables, this action is repeated. Adding of display locations for 
variables can continue until the HLL program has been completely 
eliminated from the scree.n. Conversely, as displayed variables are 
crossed out, display locations disappear and program code reappears. 

4 0  



1 2 6  

F igu re  8 .  Three Displayed Var i ab le s  

1 2 5  

A = l  B = 2  I C = 3  I D = 4  

F igu re  9 .  Four Displayed Var i ab le s  

4 1  



Certain cross reference information occasionally found in the 
output of a good compiler can be used to great benefit in GRAPE. 
Writing 1 2 0 ?  at the bottom of the screen (while the speed is at STOP) 
illuminates the line numbers of all statements that could transfer 
control to statement 120 (Figure 11). Writing X? illuminates the line 
numbers of all statements which contain the variable X (Figure 12). 
These references illuminate on all pages of the program, so one can 
ROLL through the program to find all the references. Restarting 
program execution removes the illumination as does crossing out the 
request. 

The GRAPE interpretive compiler performs considerable error check- 
ing at execution time, such as checking the range of subscripts. This 
information is almost always useful when one is trying to analyze a 
program, especially a faulty one. The extra time taken is relatively 
small in most interpretive compilers and is meaningless in a system 
such as GRAPE which has a built in delay. When an error condition is 
found, the system displays the diagnostic and halts as shown in Figure 
10. Moving the speed lever to and from STOP will cause the compiler to 
make a best guess and continue execution, if any guess as to meaning is 
possible. The user need not memorize what the best guess will be in 
any given situation, since proceeding with the execution will give him 
that information. If he does not like the guess he can take appropri- 
ate action. In condensed statements, which are "incrementally" compiled 
and run at full machine speed, no such checking is done, and so there is a 
natural way to allow the user to write "illegal" statements which will 
perform correctly.* He does just what he did to eliminate the tedious 
display of an expression evaluation; he condenses the single statement. 

Another feature which is useful in program analysis is the 
illumination of code which has never been executed. When the speed is 
at STOP, one of the messages at the top of the screen is UNUSED. 
(Refer to User's Manual.) Touching it with the pen causes the bright- 
ening of the line numbers of all statements which have not been 
executed since the last time the program was started at the beginning. 
Comment statements and certain other non-executable statements are not 
illuminated by UNUSED. Performing any other GRAPE function, except 
ROLL, removes that illumination. Figure 10 shows part of a program 
which was started at line 1 and allowed to run until it halted. Figure 
11 shows the results when the speed lever was moved to STOP and l o o ?  
was written at the bottom of the screen. When JSET? was written on top 
of the earlier request, Figure 12 resulted. When JSET? was crossed out 
and UNUSED was touched, Figure 13 resulted. 

*Statements which violate some rule of the language, but which the 
user knows will run correctly. Also included would be error state- 
ments whose default executions are acceptable. 

42  



1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

11 

12 

13 

1 4  

15 

16 

100 

e 
200 

C 

3 0 0  

C 

4 0 0  

DIMENSION TABLE ( 2 0  I 3 0 )  

I N D ~ X  = 2 

GO TO ( 2 0 0 , 3 0 0 , 4 0 0 ) ,  INDEX 

JSET = 6 

INDEX = 2 

CALL FILLER (HEIGHT) 

GO TO 1 0 0  

INDEX = 3 

CALL FILLER (WEIGHT) 

GO T O  1 0 0  

T A B L E ( J S E T , l O )  = HEIGHT * WEIGHT 

JSET I 

L = 3  

M = 2 0  

Figure 10.- Error Message 

4 3  



s RESTART SAVE TRASH UNUSED $ROLL4 

1 

2 

3 

4 

5 

6 

7 

9 

10 

11 

12 

13 

1 4  

15 

16 

1 0 0  

C 

2 0 0  

C 

300  

C 

4 0 0  

DIMENSION T A B L E ( 2 0 , 3 0 )  

INDEX = 2 

GO TO ( 2 0 0 , 3 0 0 , 4 0 0 ) ,  INDEX 

J S E T  = 6 

INDEX = 2 

CALL FILLER 

GO TO 1 0 0  

INDEX = 3 

CALL FILLER 

GO TO 100 

(HEIGHT) 

(WE I GHT ) 

TABLE ( J S E T , 1 0 )  = HEIGHT * WEIGHT 

ED 

L = 3  

M = 20 

F igure  11.- S ta t emen t  C r o s s  R e f e r e n c e  

4 4  



P 1 

STOP RESTART SAVE TRASH UNUSED  ROLL^ 

1 

2 

3 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 6  

DIMENSION TABLE(20,30) 

INDEX = 2 

100 GO TO (200,300,400), INDEX 

C 

200 JSET = 6 

INDEX = 2 

CALL FILLER (HEIGHT) 

GO TO 100 

C 

300 INDEX = 3 

CALL FILLER (WEIGHT) 

GO TO 100 

C 

400 TABLE(JSET,lO) = HEIGHT * WEIGHT 

OT DEFINED 

L = 3  

M = 20 

Figure 12.- Variable Cross Reference 

4 5  



- s 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

I 

RESTART SAVE TRASH UNU ED $ROLL& 

DIMENSION TABLE ( 2 0  I 3 0 )  

INDEX = 2 

1 0 0  GO TO ( 2 0 0 , 3 0 0 , 4 0 0 ) ,  INDEX 

C 

200 JSET = 6 

INDEX = 2 

CALL FILLER (HEIGHT) 

GO TO 100 

C 

300 INDEX = 3 

CALL FILLER (WEIGHT 

GO TO 100 

C 

400 TABLE(JSET,lO) = HEIGHT * WEIGHT 

re> 

L = 3  

M = 20 

Figure 13. Unused Code 

46  



The final message displayed at the top of the screen when 
execution is halted is used for the last editing feature. Users are 
bound to make mistakes when they edit code, They will delete the 
wrong line or will make a change and only later realize the change 
should not have been made. The operating system under which GRAPE 
runs should provide facilities for hard copy listing of files. Since 
SAVE does not modify the running HLL program, one could SAVE, create 
the listing, and resume GRAPE operations, Howeverp GRAPE has an 
easier feature to permit recovery from an incorrect correction, Tele- 
type users have the teletype paper to indicate the changes that have 
been made. Likewise, GRAPE has a first-in, first-out TRASH file in 
which is stored the last one or two hundred lines of modifications 
that were made to the program. This includes deletions and changes, 
In addition, the TRASH file has the line numbers, in orderc of the last 
hundred non-condensed statements which were executed. 

To look at this file one touches the message TRASH with the 
stylus and the most recent thirty lines of program changes appear on 
the screen, At the top of the screen the status message at the left 
still reads STOP, and the only other message is 

(See Figure 14 or the User's Manual,) One can roll through the trash 
file just as one rolls through a program, The way to terminate dis- 
play of the trash file is to continue with program execution, This 
could be done by moving the speed lever away from STOP but it can also 
be done by pressing the lever while it remains in the STOP position, 
Since execution will start at the beginning of the statement during 
which execution was halted, this single cycle execution will have no 
effect on the program operation. However,. it will restore the pro- 
gram to the screen. 

2 - 5  Special Situations 

There are four situations which demand special attention. They 
are (1) time dependent programs, ( 2 )  programs with display output, (3) 
display of multi-valued variables, (4) extra long programs. 

(1) In general, time dependent programs cannot now be run under 
GRAPE, GRAPE does not work as if the basic cycle time of the computer 
were being slowed down. Even though GRAPE could conceivably count the 

* computer cycles necessary for the execution of a given source program 
statement and could simulate interrupts, the user would not be seeing 
what this particular user was really interested in seeing, namely the 
machine status during the interrupt, However, it is possible to use 
GRAPE to test interrupt driven programs in which the timing itself is 
not so critical. The user performs the interrupt by halting execution 
and starting it at the beginning of the interrupt handline routine. 
The insertion and deletion of program statements to create certain 
conditions is simple with GRAPE, If one knows that problems arise 
when the value of an index variable gets to 1000, he can insert 

4 7  



TOP 

10 

32 

33 

34 

10 

9 

50 

51 

f ROLL & 

IF (I.GT.J) GO TO 18 

DO 60 K=l,lOO 

MATl(K) = 0 

MAT2 (K) = 0 

IF (1.GE.J) GO TO 18 

IF (1.GT.J) GO TO 18 

51 52 53 50 51 52 53 50 

52 53 50 51 106 107 108 112 

MOST RECENT LINES 

Figure 14. Trash File 

48 



IF (I.EQ.1000) PAUSE 

and then run the program at maximum speed, If one wishes to branch 
to an interrupt routine and let GRAPE remember where to branch back 
to, one can insert a subroutine call to the routine, Thus, almost the 
entire portion of, sayp a time-sharing system could be analyzed 
although certain time critical contingencies would not be tested. 

(2) The fact has already been discussed that display programs 
which slowly create pictures, perhaps even light pen sensitive 
pictures, are difficult to handle on the GRAPE display. However, there 
is no reason why a graphics user should not have two display consoles, 
one for GRAPE and one for the pictures. If two displays are not avail- 
able, there is an alternative solution, Providing the program is not 
an interactive one, that is if no graphical input is involved, the 
user could alternate looks at the picture with execution of his 
program. The computer operating system would be responsible for sav- 
ing and restarting both GRAPE and the partially created picture. A 
split screen technique with GRAPE on one side of the display face and 
the picture on the other side is also a possibility, but for most dis- 
plays considerable additional programming effort would be involved. 

There is a programmed use of the display which GRAPE does handle: 
the use of the display to simulate character output on a printer or a 
tape. Typical of this is the statement 

WRITE (DEVICE, 1 0 0 )  ARRAY, VARIAB, I, J, K 

where DEVICE will be a standard output device when this source program 
is operating for production but which is the display while the program 
is being tested. 

The method of display is exactly the same as the method for dis- 
play on the trash file. The entire display screen, except for the 
top inch or so, is used to perform the output requested in the source 
statement. At the top left of the screen is STOP, At the top middle 
is !ROLL! ROLL is meaningful only if the source statement re- 
quests more output than can be fit on the screen at one time. Touching 
the down arrow with the stylus puts the next lines of display output 
on the screen. To terminate the output and continue with the execution 
of the program, one moves the speed lever to and away from STOP. 
Figure 15 is a typical display. 

( 3 )  When the speed is set to STOP, one can request the display 
of variables which are not single valued (e.g., arrays, trees, 
switches). The display of such variables takes place exactly as with 
other requested display output; the source program code is taken off 
the screen and, except for the message space at the top, the screen 
is used for the display of the variable. The status message is STOP 
(since the speed control is at STOP); the only other message is 

structure. 
!ROLL{ The way the variable is displayed will depend on its data 

49 



ST0 ROLL 

THIS I S  DISPLAY OUTPUT 

WHICH COULD ALSO BE PRINTED 

ON A TELETYPE, 

HEIGHT = O o O  

WEIGHT = 372648 

Figure 15.  Display Output  

50 



In FORTRAN the only allowable data structure is the array, For 
a l-dimensional array, the array is displayed, to its full computer 
precision, with about seven entries per row, If ARRAY were a 1- 
dimensional array of length 24, writing "ARRAY=" at the bottom of the 
screen would produce the display of Figure 16. If ARRAY were four 
rows by three columns Figure 17 would result. If ARRAY were 50  rows 
by 9 columns Figure 18 would result. 

In the last example, can be used to display the other 
values of the subscripted variable, ARRAY, To terminate the display 
and bring back the program code, either move the speed lever away from 
STOP or simply press the lever for single cycle execution. 

(4) Finally, what of the very long programs? Can GRAPE be used 
to analyze a program which after standard compilation takes several 
minutes to run, since displaying the execution of all lines may take 
thousands of times as long? The answer is that the longer the program, 
the more useful GRAPE becomes, With a short program one can often 
memorize the entire program, and any clues at all will be sufficient 
to explain abnormal behavior. One could even tolerate an octal dump 
if the program were short enough. Likewise, one is willing to study 
another person's program if it is reasonably short, 

It is the long program, with dozens or hundreds of internal 
variables and numerous loops and convolutions, that is most difficult 
to debug or modify, And it is most difficult precisely because of 
the amount of information which is inaccessible to the user both while 
the program is (incorrectly) executing and while the user is looking at 
a listing, The problem of time for execution is not serious since a 
well implemented GRAPE uses an incremental compiler and produces real 
machine code for condensed blocks. This mode of execution takes only 
slightly longer than full machine speed execution. Furthermore, one 
would not run every program statement at delayed speed. The initial- 
ization loop in Figure 7 would be run perhaps twice before it was 
condensed, All the rest of the iterations would run at full machine 
speed 

A savings of many, many hours of human time is certainly worth 
some extra computer time, And because of the reduced number of passes 
necessary to debug a program with GRAPE, combined with a time-sharing 
system which lets other users operate during the interstatement delays, 
even the computer time may be reduced, 

5 1  



Sl-8 ROLL \4 

F i g u r e  16. ARRAY(24) 

5 2  



STOP ROLL # 

ARRAY (1,l) 

ARRAY ( 2 , l )  

ARRAY (3,l) 

ARRAY ( 4 , l )  

Figure 1 7 .  ARRAY (4,3) 

5 3  



Figure 18, ARRAY ( 5 0 3 )  

54  



2,6 USER'S MANUAL 

SITUATION MESSAGES 

Program execution GO 

STOP PAUSE, STOP, END 
Breakline, Diagnostic 

Display output, TRASH 
Multi-valued variable STOP $ROLL 4 

Speed set to STOP STO RESTART SAVE TRASH UNUSED +ROLL$. 

RESTART initializes program variables 

SAVE saves the program and returns to the operating system 

TRASH displays recent code changes and an execution trail 

UNUSED illuminates never executed code 

ROLL rolls the program 

SPECIAL CHARACTERS 

--+-Start execution here - Breakline (stops execution) 
0 Condense to one line 

> Insert a line 

A Insert text 

*Erase a line or a function 

( Move a line 

BOTTOM OF THE SCREEN 

x =  requests the value of X 

X = 1143-2 sets the value of X 

X? illuminates references to X 

120? illuminates references to statement 120 

55 



I11 GRAPE PRACTICE 

3.1 Novel Hardware And Software Building Blocks 

3.1.1 Required. - GRAPE draws on a variety of new and experimen- 
tal techniques in computing. Although all of them exist in the comput- 
ing world, several of them.are still at the stage where implementation 
is a separate research effort of itself. Thus a full implementation 
of GRAPE in 1 9 6 8  would have been a several man effort. Fortunately, 
enough hardware resources were available so that a GRAPE implementation 
could be produced which retains many of the novel ideas given here. 
This version was written to test these novel features and to demon- 
strate the usefulness of the GRAPE approach. In particular, all the 
source program execution and the execution function features are 
retained, although some flexibility has been lost. Several of the 
editing functions do not exist. Throughout this discussion, "source 
program'' refers to the user program being analyzed under GRAPE, a 
"statement" is an instruction in the source program, and a "line" 
is a line on the screen. For example, the source program statement 
" 8 0  G@ T@ 9 0 "  may be line 1 5  on the display. 

The GRAPE hardware and software building blocks that were novel 
in 1 9 6 8  are as follows: 

1. A computer driven refresh cathode ray tube with the capabil- 
ity of drawing several hundred characters and with point drawing 
capability. 

2. A computer driven graphical input tablet. 

3. Software to control the display. 

4. Software to control the tablet (and to associate it with the 
display) 

5.  Character recognition software to interpret information from 
the tablet. 

6. An interpretive compiler for the higher level language which 
will produce code that can be handled by the execution phase. 

7, The execution phase of GRAPE, which will not only perform 
the actions required by the source language statements but will also 
take care of updating the information on the display. 

8. The editing phase of GRAPE which will allow both editing of 
the source language statements and inputting of execution instructions 
(such as D ' I )  . 

56 



3,1.2 Provided. - The computer on which GRAPE is implemented is 
a Honeywell DDP-516; a 16-bit, 1-microsecond machine with a multi- 
plexed input/output channel, The mass storage device is a standard 
disc drive similar to the IBM 2311. In a later section, the trans- 
portability of GRAPE to other machines will be discussed, Each of the 
building blocks listed above was handled as follows: 

1. The display is made by ID1 (Information Display Incorporated). 
It has character, vector, and point generators, and a light pen. It does 
not have subroutining, jumps, or breaks, More than one display station 
can be run from the display generator, At present it is driving three 
ID1 display stations as described above and one ITT 3-color display. 
The color display station does not have a hardware character generator, 
and no attempt has been made to put software generated characters on 
its screen. In Section V there are comments on adding other hardware 
capabilities to the GRAPE system. 

It may be argued that excellent equipment should not be a pre- 
requisite for this type of research. Such is true and the display had 
more capability than was needed. However, lack of a hardware character 
generator would be a serious deficiency. This is not so much because 
of the extra programming involved in writing a software character 
generator but because of the reduction in material which could be dis- 
played on the screen. When the flicker on a display is severe, 
textual information is much harder to comprehend than picture informa- 
tion. Since software generated characters would take 5 to 10 times 
as much display time to put on the screen (for this particular display), 
and since the flicker is already slightly noticeable, considerably 
less material would be visible to the user at one time. But a funda- 
mental concept of GRAPE is to give the user a window to his program, 
and there is a critical size below which the window is no window at all. 
Seeing ten or even twenty lines of a higher level language does not 
give the user the feeling that he can see almost everything he wants to, 
As a result, hardware character generation is a GRAPE necessity, 

2 ,  Both a BBN Grafacon lOlOA and a Sylvania Data Tablet 1 were 
at the installation and this availability had a great impact on 
the basic design of GRAPE. It is the graphical input tablet that 
permits editing directly on the source program itself and that allows 
direct input of the execution functions. A listing of a program or a 
display of a non-executing program is two dimensional, and the tablet 
permits corresponding two-dimensional input. All the input problems 
of addressing and location which occur if the input device is one 
dimensional, such as a teletype, disappear when the tablet is used. 
However, for reasons discussed in 5 below, the tablets were not used 
in the present implementation. 

3 .  There are several levels of software operations which must 
exist in some form for the display. First is the basic function of 
refreshing the display at regular intervals and servicing the inter- 
rupts from the display. Second is performing user requested control 

57 



functions, such as disabling the light pen. Third is permitting the 
user to change the structure or contents of the display code buffer. 

The complexity of these functions will depend on the hardware 
characteristics of both the computer and the display. In the present 
case, not only did no software exist for the display, but the 
economies of Section I applied, and it was necessary that the display 
run in a time-shared environment- Furthermore, it was intended that 
there be multiple displays running simultaneously in this environment,, 
(The author was involved in the design of the time-sharing system and 
was able to guarantee that the system was conducive to the use of 
displays,)* The precise implementation of the various levels of soft- 
ware is not of interest here, but the incorporation of computer driven 
tablets in a time shared environment is somewhat unusual, and the results 
of this effort are described in Section IV. 

4. Software was developed according to the design in Section IV 
to control the graphical input tablet. The software accepts data from 
the tablet, delivers the data to the user (probably the character 
recognizer), and associates a tablet with a display for the temporary 
trace. But the graphical input tablet has not been used in the present 
implementation of GRAPE, 

5. Character recognition is not a feature of the displayed 
execution of GRAPE. It is, however, important in the "naturalness" 
and total environment supplied by GRAPE. While many people compose 
papers at a typewriter, few prefer a typewriter to a pencil in order 
to indicate the errors on a page of text, Character recognition is the 
capability of the computer (via software) to recognize input from a 
graphical tablet as being certain letters (ref. 10). Those who have 
seen editing being done on a graphical input tablet with a good 
character recognizer and a good editing program already appreciate the 
usefulness of this tool. Those who are not familiar with this 
technique may just consider how often they have made penciled correc- 
tions on a sheet of paper and wished that the corrected version would 
magically appear. Certainly the naive computer user would insist and 
the experienced user would prefer that the tablet be available to him, 

Because of continuing hardware difficulties and delays connecting 
the tablets to the computer and because the character recognition is 
not vital to the demonstration of GRAPE, use of the tablet was fore- 
gone and the teletype was used instead, It was desirable, however, 
to use graphical methods rather than teletype input for the man- 
machine interaction which occurs during the source program execution, 
Therefore, the speed of execution of the source program is controlled 
with the light pen- Appropriate light pen software was already written 
(by this author) as part of the display support system, 

6. Some sort of compilation of the HLL program is required 
which permits analysis of the source language statement and display 
of the temporary results according to the original HLL statement, for 

*A description of the graphics software can be found in Section IV,B 
of the NASA/ERC Computer Research Laboratory Systems Programming Manual. 

58  



there is not enough information in the machine language to pro- 
duce the displays desired. One must retain not only the character 
string of the source code but also information about the statement's 
meaning. This can be done by interpretive compiling, that is by 
recompiling each statement every time it is executed, or by incre- 
mental compiling, that is by compiling each statement once and storing 
it in some intermediate code. This latter makes the statement easy to 
execute but retains the necessary information to make it properly dis- 
playable. More sophisticated incremental compiling which would bind 
blocks of executable code together could be used for sections of code 
which are not to be displayed. Notice that it must be possible to 
start execution of the source program anywhere, even following code 
which is incorrectly written. Such modes of compilation mean the 
existence of a properly constructed compiler. No such compiler 
existed for the DDP-516, therefore, this author wrote one. 

Writing a topnotch interpretive or incremental compiler is not a 
straightforward task because the ideas are not so well understood as 
with normal compilers. To simplify the compiler's job, the source 
language was simplified. In particular, some FORTRAN statements were 
left out, the formats of permissible statements are rigidly defined, 
and little error checking is done. The syntax rules for the FORTRAN 
version used in this implementation will be given in 3.2. Section 
3 . 3  contains a description of the data bases and of the compiler. 

7. The source program execution and the execution functions 
work essentially as described earlier. Some reduction has been made 
in the sophistication of the material displayed, but the results of 
every statement are still clearly indicated. The speed control works 
by means of a light pen visible speed line on the display face. 

All the execution functions are implemented. They are invoked 
via a keyboard rather than a tablet, but they still appear on the 
display. * 

8. The editing functions in the implemented version of GRAPE 
are different from what was described above. First, all editing 

*I write keyboard rather than teletype because GRAPE'S reaction to 
the input is always on the screen, not on the teletype paper. Thus, 
even though it is a teletype that is active, only the keyboard part 
is actually used. 

59 



is done via keyboard.(As with execution functions GRAPE responds on 
the display screen.) 
and associated functions. These features do belong in any production 
version of GRAPE, especially for use with long HLL programs. 

Second,. TRASH is not implemented nor is UNUSED 

3.2 Implemented GRAPE -- User Side 
3.2.1 Basics. - The design philosophy of this implementation 

of GRAPE is the same as that of the ultimate GRAPE. What makes this 
version different at the conceptual level is the change in hardware. 
The user has a display, a light pen, and a teletype. 

The light pen is used only for controlling the speed of execution 
of the source program. Touching the speed line with the light pen 
sets the speed of execution; the top is the fast end, the bottom is 
the slow end, the very bottom is STOP. The section of the line cor- 
responding to the present speed is brighter than the rest of the line. 
Similarly the word STOP serves as the status message; it is displayed 
more brightly when the program is not executing. 

The teletype is used to input commands to GRAPE (commands to 
perform the execution and editing functions) and to input changes 
to the source program code. A command is composed of a command code 
and one or two operands which are generally line numbers. For example 
to delete line 14 one types DELETE 14.* To condense lines 20 through 
25 one types CONDENSE 20 25. Here one is issuing commands to a system 
to perform a function, whereas with the graphical input tablet, one 
would perform the function directly. However, all functions have an 
immediate visible result so the intruding system is existent but not 
mysterious. 

The display screen setup is shown in Figure 19. The permissible 
source program statements are all short, so the displayed variables 
were moved to the right side of the screen, leaving room for additiona 
lines of code. STOP serves as the status message. No other messages 
appear since functions are initiated at the keyboard. 

3.2.2 Source Program Execution. - Source program execution takes 
place in a manner similar to the execution described in 2.2. The 
program is executed one statement at a time, and appropriate results 
are displayed. When control transfers to a statement which is not 
presently on the display, a new page of source program code headed by 
that statement is put on the display. The line number of the present1 
executing statement is brightened as is the section of the speed line 
corresponding to the present execution speed.** Displayed variables 

*Actually the format is the first three letters of the command 
followed by the one or two 2-digit line numbers. 

**This latter feedback, although not necessary, is useful because the 
light pen can be put down on a table while the program is executing. 
The graphical input tablet stylus would remain in place at the curren 
speed a 

6 0  



are properly updated when an arithmetic statement modifies them. The 
statements PAUSE and END halt execution and the status message at the 
bottom of the speed line changes from STOP to STO 

The HLL used in this implementation is a subset of FORTRAN IV. 
Its syntax rules are given in Figure 20. (A knowledge of FORTRAN IV 
is presumed.) Every statement, except READ and WRITE, takes one 
execution cycle. In Figure 21 there are some sample statements 
brightened as they would be during execution. When more than one event 
might take place, e.g., a logical IF may be false or true, more than one 
sample is given. A typical display is shown in Figure 22. 

Execution errors, such as trying to transfer to a non-existent 
statement, cause an error message to be typed on the teletype. 

3.2.3 Execution Functions. - All the GRAPE execution functions 
occur in the implementation and the discussion below somewhat follows 
the discussion of 2.3 on the full GRAPE execution functions. The speed 
line on the face of the display works like the speed control in a tablet 
implementation. The teletype is receptive to execution or editing 
commands only when the speed is at STOP. To continue with execution 
if the speed is STOP, one touches some other section of the line. 

The - function is performed by typing START followed by the 
line number; e.g., START 4. As in Section 11, one must then move the 
speed control from STOP to induce continuous execution. 

Because there is no easy way of controlling the speed of source 
program roll with the light pen, two functions have been implemented 
which move the program forward. Typing ROLL n (e.g., ROLL 12) rolls 
the program forward n lines, at the rate of two lines per second. The 
command PAGE displays the next full page, the next 40 lines of program 
code. As with the full GRAPE design, if execution is begun following a 
ROLL or PAGE but not a START, the line which was executing when the 
program stopped will be immediately brought onto the screen. 

Typing RESTART puts the first page of the program on the screen: 
however, it does not undefine all the variables and it does not change 
the present execution line. 

Typing SAVE will do what touching SAVE with the stylus would do. 
When the computer is not running in the time shared mode, the command 
SAVE will store on the mass storage device the present version of the 
HLL program, but control stays in GRAPE. 

The above commands correspond to the five functions of 2.3.1. 
The next few commands correspond to the three functions of 2.3.2. , 
They perform in a manner very similar to the original (Section 11) 
design, and no special examples or discussion are needed here. 

61 



01 

02  

0 3  

04 

05  

0 6  

07 

08  

- 
a- 

- 

18 

19 I 

/ L 

2 0  u STOP 

F igu re  1 9 .  Display Setup 

62 



C COMMENT LINES ARE VALID 
A=B 
A=BW 
A=BOCOd 
A=Z (B,C,D) 
Z (A,B,C)=D 
GO TO SA 
GO TO (SA,SB,SC),A 

IF(A.LR.B)GO TO SA 
CALL SUBRXX (SA) 

RETURN 
READ A 
WRITE A 
PAUSE 
END 

IF(A)SA,SB,SC 

SA SUBROUTINE SUBRXX 

A,B,C,D are constants or are one-letter integer variables. 
Z is an array of dimension 4 , 2 0 , 1 0 .  
SA,SB,SC are two-digit statement labels. Any statement 

o is +, - I  *. 
LR is a logical relation EQ,NE,LT,GT,LE,GE. 
Input and output is in I6 format on the teletype. 
Only one level of subroutines is permitted. 
There can be no imbedded spaces. 

can be labeled in columns 1 and 2. 

Figure 20. Language Syntax 

63 



e THIS I S  A COMMENT 

3 0  

GO TO ( 1 0 , 2 0 , 3 0 ) , 1  
GO TO ( m , 2 0 , 3 0 )  , I  
GO TO ( 1 0 , 2 0 , 3 0 ) , 1  _. 

I F ( N ) 1 0 , 2 0 , 3 0  
I F  (N)m, 2 0 , 3 0  
I F  ( N )  1 0  ,m, - 30  

I F ( I . E Q . J ) G O  TO 4 0  

I=J-9*K = -0001 2 
Z (3,1,5)=K = 01488 

CALL NEWTON ( 8 0 )  

R E T U R N  
80 SU B ROUT I N E  NEWTON 

READ A 
WRITE A 

PAUSE 
NB 

Figure  21. Sample Statements 

6 4  



01 1=3 

02 c SET ARRAYS 

0 IF(N.GT.0) GO TO 10 

04 J=K*2fL 

05 GO TO 30  x=- 0 00 01 

06 10 J=K*2-L 

07 30 Z(I,J,K)=l 

08 IF (L) 40 , 40  I 4 5  

I= 00003 

STOP 

Figure  22 .  Typical  Display 

65 



One can set a breakline at line n by typing SETBREAK n. This 
breakline can be crossed out by KILLBREAK ne 

The HLL program variables are displayed on the right side of the 
screen by SHOW VARIABLE n, where n is a number from 1 to 25 corre- 
sponding to the variables A through Y. This variable can be removed 
from the screen by REMOVE VARIABLE n. A maximum of five variables can 
be displayed at one time. The value of a single-valued variable can be 
set by typing VARIABLE SET n m where n is the variable and m is the 
new value. 

CONDENSE n m will condense from line n to line m. EXPAND n will 
serve to cross out the condense character at line n and bring back 
the hidden lines. Any illegal input, such as the use of a line number 
which is not presently on the screen, causes an error message to be 
typed on the teletype. 

3.2.4 Editing Functions. - Typing DELETE n while the speed is 
STOP will delete line n from the source program. For example, if one 
typed DELETE 39 when the bottom of the screen read 

38 
39 
40 

F = 128 
G = K* 34 
H = V - ' W  

the bottom of the screen would then look like 

38 
39 
40 

F = 128 

I = 6 * I f J  
H = V - W  

Similarly typing INSERT n followed by a FORTRAN statement will push 
the bottom line off the screen and insert the new statement after line 
n. One can type CHANGE n followed by the new statement to change a 
line of code. Finally, typing MOVE n m will move the present line n 
to just after the present line m. Blocks of code can be moved by 
condensing them to a single line. Illegal inputs cause error messages 
to be typed. These four commands correspond to the five functions of 
3.4.1. Change serves for both A and overwriting. The compiler 
features and the two messages described in the last part of 2.4.2 
are not implemented. 

Setting variables was discussed under execution functions; array 
entries must be set by a program statement. 

6 6  



Some other points are worth mentioning. When GRAPE is first 
started there is a comment statement on line 1. Otherwise there 
would be no way to insert the first statement of a new program. If 
the source program to be run is already on the mass storage device 
(disk), it will be automatically read when GRAPE first starts. The 
time-sharing system has a set of special characters which permit the 
user to erase the iast character, the last word, or the last line he 
has typed. The line numbers in this GRAPE are done differently from 
the earlier description. Here the line numbers 1 through 40 are 
always on the screen. They serve as markers for editing and execu- 
tion but not as reference points in long programs. 

6 7  



3 . 2 . 5  User's Manual 

SITUATION MESSAGE 

Program Executing Part of speedline is bright 

Program Not Executing SPO : below speedline, is bright 

SPECIAL CHARACTERS 

Condensed code 

I Break line 

EXECUTION FUNCTIONS 

START N start at SETBREAK N break line at line N 
line N 

ROLL N roll N KILL BREAK N erase break at line N 
lines 

1 - 2 5  PAGE turn one SHOW display variable A - 
Page VARIABLE N 

RESTART beginning REMOVE do not display N 
of program VARIABLE N 

SAVE save the VARIABLE set variable N to M 
program SET N M 

CONDENSE N M condense EXPAND N erase at line N 
N to M 

EDITING FUNCTIONS 

DELETE N delete 
line N 

CHANGE N S change line N to S 

INSERT N S insert S MOVE N M put line N after M 
after N 

S is a program statement 

68 



3 . 3  Implemented Grape -- System Side 
3 . 3 . 1  Concepts in the Programming. - The GRAPE system is a 

collection of about 60 Fortran subroutines. Since it was clear from 
the start that the design of the execution functions and the editing 
functions would be modified as visual results replaced mental images, 
a special effort was made to separate cleanly each of the functions 
into a simple short subroutine. Both comprehensibility and ease of 
modification were enhanced, by this software modularity. (Many of 
these short subroutines are in fact used as co-routines. That is, 
after control has filtered down from a driving routine through one or 
more levels of analysis to the routine which performs the appropriate 
function, the control goes directly back to the driving routine.) 

Another aspect of the modularity in the GRAPE system is that the 
input/output has been separated from the rest of the system. This was 
done since changes in peripheral devices are likely in further imple- 
mentations of GRAPE. For example tablet input and character recogni- 
tion will be substituted for teletype input. More important is the 
possible change of display hardware, since the use of the display is 
pervasive throughout the GRAPE software. Commands and data for the 
ID1 display hardware are handled as variables whose values are set in 
the initialization section of GRAPE. A change of displays did occur 
during the implementation, and it was handled with little difficulty, 
but the two displays were quite similar. Moving GRAPE to a new 
computer with a differently struckured display would be a harder task, 
but the isolation of the display data should simplify it. 

3 . 3 . 2  Structure of the System. - Appendix A is a listing of the 
GRAPE system. In the description below, subroutine names are 
occasionally included, e.g., EDITOR. The more interested reader may 
wish to look at some of the routines. A description of the data 
structure follows the over-all program description and reference to 
it will make the listing more intelligible. A complete reading of 
3 . 3  should precede one's looking at the program. 

The system is divided into four sections: initialization, com- 
pilation, execution, function. 

INITIALIZATION 

These routines set up variables and constants which are used by 
the other programs. 
display screen size. The routines are set to appropriate initial values c 
various information in the data structure such as the initial execution 
speed, They set up variables and constants when bit patterns are 
relevant for the particular display being used. 
picture on the display screen is generated, 

Typical of these are character strings and the 

Finally the initial 

69 



COMPILATION 

The compilation section (READST) takes one statement of a source 
program and compiles it into an intermediate language which the exe- 
cution section will understand. It also places the new statement in 
the data structure with proper reference to the statements which 
precede and follow it physically (not logically) in the program. 
Finally, it saves the input character string so that it can be display- 
ed on the screen (PACK). No special compilation is used for condense 
blocks. 

EXECUTION 

The execution section is made up of a driving program, XECUTE, 
which during source program execution does the initial analysis of each 
statement, including checking for break lines and checking for user 
induced changes in execution speed. 
section handle the execution of a particular statement type, e.g., 
XCOMNT takes care of COMMENT statements. UNDO has the general function 
of removing from the screen the intensification resulting from one 
statement execution and preparing the screen for the next statement. 
DELAY has the function of delaying while each source program statement 
is intensified. When GRAPE is running under time sharing, DELAY works 
by calls to the time-sharing scheduler. 
the computer, it simply executes a short loop to waste time. 

Most of the subroutines in this 

When GRAPE is the sole user of 

FUNCTION 

The function section is structured in a way similar to the execu- 
tion section. When execution stops, control is transferred to a driving 
program, EDITOR, which does the initial analysis of any requested func- 
tion and then calls a separate routine to actually perform the function. 
For example, DELETE deletes a source statement. These function programs 
do not update the display screen. They work by changing the data 
structure representing the source program. REGEN regenerates the screen 
after the routines have modified the data structure. EDITOR also 
begins program execution when the speed is changed from STOP. 

3 . 3 . 3  Data Structure. - Some information about the data blocks 
Preceding the listing of the program in Appendix A is a 

in GRAPE will help in understanding how the implementation is actually 
constructed. 
listing of the COMMON areas. 
consider these variables and constants to be external to all 
programs in GRAPE. 
They set certain features of the display hardware, such as intensity 
and light pen visibility. 
formation which regularly appears on the screen, such as line numbers 
and the speed control. INPCOM is used by the compilation section as 
an input buffer and as permanent storage for the character string of 
each source statement. EXCOM contains character strings which are used 
during execution, the variables A - Y which are used as data in the HLL 

Since no names are duplicated one may 

In IDICOM are constants which are display commands. 

In BUTCOM are variables which relate to in- 

70 



source program (VAR), and temporary information which describes the 
line being executed. EDCOM contains information used during program 
execution. This information was set up during the compilation phase 
and may be modified during the editing phase. SUMCOM has additional 
information about each source statement. It also has information about 
statement labels (FORTRAN "statement numbers," e.g., 44 I = 1) , location 
in the display buffer of a statement, line numbers onthe screen (e.g., 
10 44 I = 1). OTHCOM has more information about line numbers and also 
has more information about the statement being executed. 
- 

Most interesting is the information used during execution. The 
following data is available for each source program statement. 

(a) the intermediate language results of the compilation, 
namely the type of FORTRAN statement (TYPE in EDCOM) and the program 
variables in that statement (STATE in SUMCOM) 

(b) the original code (STUFF in INPCOM) 

(c) the present visibility status of the statement, either 
visible, preceded by a breakline, deleted, or condensed (VIZ in EDCOM) 

(d) the next physical (not logical) statement in the program 
(POINT in EDCOM) 

(e) the present location of that statement in the display 
buffer (DBUF in SUMCOM) and the present location of that statement on 
the screen (LBUF in SUMCOM) 

Also used during execution is STLABL in SUMCOM which tells which 
statement has a given,statement label. The other large array, LINNUM 
in OTHCOM, is used in editing. It tells which statement is on a given 
line of the display screen. Relevant to (d) above notice that there 
is no backward physical' pointer. As a result only forward ROLLing is 
(easily) implemented. For the same reason, when a new section of text 
appears on the screen, the presently executing statement is the top 
line on the screen, not the third or fourth. 

3 . 3 . 4  Other System Information. - Certain programs called by 
GRAPE are not part of the GRAPE system. Most of them are part of the 
time-sharing system and are related to the display. 

DSPATT assigns a display to the user. 

DSPTRN turns that display on or off. 

MOVU2D puts user generated display code into the display buffer 
(i.e., onto the screen). The new code may be appended to 
the buffer (to add to the picture) or may replace code 
which is already in the buffer (to change the picture). 

DSPCUT shortens the display buffer, thus removing from the screen 
the most recently appended information. 

71 



DSPSIZ r e t u r n s  t h e  s i z e  of t h e  b u f f e r ,  i . e . ,  t h e  l o c a t i o n  where 
t h e  next  block of code w i l l  be appended. 

LPNSBL a c t i v a t e s  t h e  l i g h t  pen. 

LPNCLR clears t h e  l i g h t  pen h i t  b u f f e r ,  

LPNRD d e l i v e r s  t h e  l i g h t  pen h i t  b u f f e r  t o  t h e  u s e r .  

R D I N ,  WRLS, SEARCH are d i s k  i n p u t  and ouput. 

BN2DEC t u r n s  an i n t e g e r  i n t o  a c h a r a c t e r  s t r i n g .  

The subrout ines  i n  GRAPE are l i s t e d  below. Figure 2 3  is a block dia- 
gram of t h e  system. Cer t a in  very  commonly used subrout ines  such as 
UNDO and DELAY are no t  included i n  t h e  block diagram, which i s  in tend-  
ed t o  g i v e  a b a s i c  f e e l i n g  f o r  t h e  flow of c o n t r o l  i n  t h e  system. 

I N I T I A L I Z A T I O N  

MAIN 
SETCON 
SETLET 
SETARR 
SETBUT 

COMPILATION 

READST 
STNUM 
VARIAB 
PACK 

EXECUTION FUNCTION 

XECUTE 
PENSEE 
XCOMNT 
XGOTO 
XCGOTO 
XPAUSE 
XEND 
XREAD 
XWRITE 
XRITH 
XARTHF 
XARITH 
XLOGIF 
XYSLGF 
XNOLGF 
XSUBRU 
XSBCAL 
XRETRN 
XARREV 
XVEARR 
BRAKE 
UNDO 
DELAY 
EXERR 

EDITOR 
STOOP 
REGEN 
CHANGE 
INSERT 
DELETE 
CONDEN 
EXPAND 
START 
MOVE 
SETBRK 
KILBRK 
VARSET 
SHOVAR 
PUTVAR 
REMVAR 
SAVE 
OUTLIN 
RESTRT 
RENTRY 
PAGE 
ROLL 
RANGE 
EDERR 

7 2  



I NIT1 ALlZATlON 

SPEED # STOP 

SPEED = STOP I 
BREAK LINE 

EX ECU T LON 
OF 

S TAT E M E N TS 

Figure 2 3 .  GRAPE Block D i a g r a m  

7 3  



3.3.5 Graphical Input Tablet Interface. - The interface of 
the graphical input tablet with the rest of the GRAPE system must be 
described separately since it is not part of the implementation. In 
the light pen and keyboard implementation during source program execu- 
tion, the light pen is checked after every execution cycle. Light 
pen hits which are not on the speed line are disregarded as are all 
but the most recent one of the hits on the speed line. Similarly, 
when a graphical tablet is used, after each execution cycle GRAPE 
will read the tablet input buffer and take the most recent position 
on the speed line as the current speed. During source program execu- 
tion GRAPE requests the computer executive system that no ink 
trace be put on the display, that points be recorded only when 
the stylus is resting on the tablet, and that the data rate be slowed 
to about twenty points per second. If the computer system does not 
understand such requests, GRAPE will have to do this data reduction. 

It is easy to tell whether the stylus is on the speed line since 
the line is at a particular X value with a range of 1/4 inch to either 
side. The length of the line is divided into about twenty discrete 
speed areas. If the stylus is resting precisely on a division between 
areas, the Y value input may alternate between the two areas and the 
speed of execution will alternate between the two speeds. This could 
be remedied by requiring that the stylus have moved at least 1/4 inch 
before a change in speed is recognized. However, the difference 
between two successive speeds will not be readily noticeable to the 
observer, and the speed is not likely to remain at any particular 
setting for very long. Therefore, adjusting for this rare occurrence 
is not warranted. 

When the speed has been set to STOP, GRAPE requests the computer 
system to record input data points in the manner that the character 
recognition program prefers. As soon as a single data point away from 
the speed control is read, all tablet data points go directly to the 
character recognizer. It returns to the GRAPE system the charac- 
ters written, including their locations and sizes. The recognizable 
characters must include all the characters from the higher level 

The use of graphical tablet data to edit a page of computer program 
code has already been demonstrated, most notably at Rand (see foot- 
note in Section 2.4.1). GRAPE knows where every character on the 
screen is and can update source program code, as required. 

language P ~ U S  - , A I r- a , ? , G I t r-- 

If no characters are being written, GRAPE does nothing. However, 
when the last few characters are the name of a variable plus an equal 
sign at the bottom of the screen, then the value of the variable is 
displayed. If > is written between two line numbers, GRAPE must 
adjust the display and set up proper internal pointers for the new 
line. Likewise when a line is deleted,when a variable is changed at 
the bottom of the screen, when a breakline is inserted or deleted, 
when statements are moved or condensed, or when- is drawn, GRAPE 

74 



updates its internal data structure and the display screen. These are 
the same actions that were done for these functions in a keyboard imple- 
mentation. In the case of 4, if the statement has been edited, 
recompilation must precede execution. Any character, including a non- 
recognizable one, that is drawn over a message such as RESTART means 
that this function is to occur, except that if UNUSED is on, an erase 
character will turn it off. 

Any character drawn at the STOP end of the speed control means 
perform whatever compiling has become necessary because of changes in 
code, then execute one cycle. Furthermore, tablet data now comes to 
GRAPE, as it did earlier during source program execrl-tion, instead of 
going to the character recognizer. 

ROLL is a special situation. The user will be holding the stylus 
down on one of the arrows and GRAPE, not the recognizer, will have to 
examine the data points. There are two ways in which GRAPE might get 
control of the input data, depending on the computer system. The' 
tablet input software may have an alarm if the stylus is pressed down 
for too long, or GRAPE may look at one X,Y coordinate pair every 
half second to see if the stylus is near ROLL. 

There are convenience reasons for using the character recognizer 
to tell whether the user is pointing to any of the messages except 
ROLL. First, tablet data is uniformly handled by a single program, 
thus limiting the amount of programming which must be put in GRAPE. 
Second, the recognizer is already programmed to adjust for noise from 
the tablet. Third, the recognizer sees characters only after pen 
strokes are completed, that is when the stylus is no longer being 
pushed down on the tablet to trigger the pen point switch. As a result, 
the request of a function will be known to GRAPE only after the stylus 
has been pressed on the message, not during the pressure. This solves 
the problem of accidently performing a function a second time because 
GRAPE had completed it the first time before the user had lifted the 
stylus. 

3.3.6 Language. - Some comments are in order for choosing the 
language for the implementation being discussed. Some claim that 
using a machine oriented language is the only way to write "systems" 
while others claim that higher level languages should be used. The 
latter say that the l o s s  of efficiency and loss  of flexibility is more 
than compensated for by the speed of programming and clarity of 
programs. 
is another advantage of HLL, although work such as this is often 
machine dependent. 

Direct transferral of programs from one machine to another 

The trend is towards higher level languages. For example, 
MULTICS at MIT is written in PL/I (ref. 11). (I have done systems 
work in both machine oriented languages and procedure oriented 
languages and my preference is definitely for the latter.) 
although not perfect, is probably the best available language for the 
task. 
al loops, recursivity, freedom in creating data structures, and direct 
reference of both the contents and the address of variables. 

BCPL, 

Among its useful features are an increased variety of condition- 

75 



If the computer language revolution involving "compiler-compilers 
and "extendible languages" does not occur in the next few yearsp the 
inevitable popularity of PL/I will cause it to be the most used 
language for system work. 

FORTRAN is certainly not ideal for systems work. Designed 
primarily for scientific workl FORTRAN'S most highly developed feature 
the mathematical routines and the input/output routines, are useless 
for writing systems. This language has only one kind of loop, has no 
facilities for letting the user get at the machine hardware, has 
limited facilities for distinguishing between external and internal 
variables, and has severe restrictions on the form for subscripts and 
loop indices. Further, it has no facilities for dealing with inter- 
rupts. Both the code produced and the library subroutines are rarely 
re-entrant. 

However, with the help of a few short assembly language 
routines, plus a few programming techniques, one can write systems 
in FORTRAN. Typical of the former are routines which permit bit 
manipulation in the live registers. Typical of the latter is a 
technique for referencing specific physical addresses in memory. 

Given that a HLL language is going to be used for a particular 
system, and given that for an average size "system" the extra trouble 
it takes to program in the worst of these languages is less than the 
extra trouble it takes to write a new compiler, the availability of 
a particular language may be the determining factor in the decision 
of which language to use. 

The time-sharing system of which the display system software 
described above is one part is written in FORTRAN, Eighty to ninety 
percent of the code is in FORTRAN. The reason that there is even 
that much assembly language code is that the instruction set of the 
DDP-516 is not large. Thus, saving the live reqisters of the com- 
puter takes about fifteen instructions, while on some computers savin5 
them takes only one. 

GRAPE is written entirely in FORTRAN. It consists of many 
short routines which are essentially self-documenting. 
present implementation could be moved to another computer and 
display much more easily than one could rewrite it from flow- 
charts, but it is not machine independent. It depends slightly 
on the structure of the DDP-516, slightly on the display system 
software which is running on the DDP-516, and somewhat more on 
the ID1 display. Changes to GRAPE to accommodate differences 
between computers would not be difficult. Changes to accommodate 
differences in displays would of course depend on how different 
the displays were. 

The 

76 



On the success of writing GRAPE in FORTRAN, it can only be 
said that the programming was not difficult. (It would of course 
have been helpful to use GRAPE to debug itself.) Additions and 
changes to GRAPE which were indicated during on-line experience 
with the system were easy to make. Finally, it takes relatively 
little effort for a person unfamiliar with the programs to under- 
stand them. 

3.4 Results of Implementation 

3.4.1 Teaching Tool/Analytic Tool. - The original implementa- 
tion was a research effort and much that was learned has been 
reflected in the GRAPE design of Section 11. 

GRAPE has proved to be useful and effective as a teaching 
tool because, while a beginning programmer is not at all capable of 
interpolating backwards and forwards through a program armed only 
with input/output results, with GRAPE the novice gets individual 
dynamic instruction on how every statement operates. He gets to 
try easily his own programs,and GRAPE makes visible all that he 
could not see. For teaching programming, interpretive execution 
on a teletype oriented time-shared computer is a vast improvement 
over batch processing with two day turn around; GRAPE is as vast an 
improvement over the teletype. 

When GRAPE was used, results indicated that no instruction is 
necessary to teach someone the meaninq of the information being 
temporarily displayed on the screen, as described in Source 
Program Execution, 3.2. As intended, the user can follow the 
display without comprehending each line of code. And this is true 
even though the display is not as clear as it would be in a GRAPE 
implemented according to the theoretical design. The input to imple- 
mented GRAPE is much less natural than it might be (being teletype 
rather than tablet) but it is not hard to learn. Ten minutes live 
demonstration and the one page User's Manual are all the informa- 
tion an inexperienced programmer needs. And a half hour experi- 
menting with the system on his own will make him a GRAPE expert. 

Although the GRAPE language limitations have kept any large 
tasks from being implemented with GRAPE, many people have experi- 
mented with GRAPE and a few people have used it on real pro- 
gramming problems with favorable reactions. GRAPE seems to be of 
real value as a program debugging and program modification aid. 

The value of GRAPE in two of its three areas of application 
is thus described. 
for teaching programming. 
during the stage when the novice cannot visualize how a program 
sequence might work, as well as how GRAPE provides the immediate 
reinforcement so helpful in learning. 
tion is an aid to understanding and perhaps modifying someone 

The first area of application is as an aid 
We have already discussed how GRAPE helps 

The second area of applica- 

77 



else's program. GRAPE does everything that one tries to do during 
a desk simulation of a program's cperation. GRAPE does the work 
faster and it does not make mistakes. Computations and calcula- 
tions are done by the computer; the user is free to concentrate 
on where and how the program operates. With the GRAPE execution 
and editing features, one can modify a program by trial and error, 
something which one would not do if his only feedback was pro- 
grammed output. 

3.4.2 Debugging Tool/Programming Errors. - The third GRAPE 
application area is program debugging. A survey was made of 
several programmers whose programming experience ranged from two 
months to several years. The programming errors most frequently 
mentioned as common sources of trouble are listed below: 

1. A variable name changed but not everywhere 

2. Bad array entry M(1,J) for M(J,I) 

3 .  Poorly done input/output 

4. Incorrect mode declaration 

5. Infinite loops 

6. Misuse of subroutines 

7 .  Accidental local use of an externally defined variable, 
mistake using COMMON 

8. Neglected special cases 

9. Testing of boundary conditions 

10. Wrong relational ( < instead of > ) or wrong logical 
(doing some operation based on a result of TRUE instead 
of a result of FALSE) 

11. Forgetting simple things, such as initializing or 
incrementing 

12. Wrong order of doing things e.g., computing a result, 
then resetting the variable, then outputting the variable, 
instead of doing the output before the reset. 

13. Reference to the ''wrong variable'' 

14. Bad arithmetic statement 

78 



Indications are that the programming errors in the development of 
a time-sharing system (not the one GRAPE runs under) and the errors 
in a lengthy applications program are of these types. All of the 
errors in the applications program and almost all the ones in the 
time-sharing system fit into one of the above categories. 

The first error is an error which a good editor will handle. 
It should be possible to say ''change all occurrences of character 
string A to B".  When error 2 generates out of range subscripts, 
an error checking interpretive compiler (as recommended for use 
with GRAPE) will catch the fault. It is felt by many that error 
3 is basically a problem with the language. Better input/output 
facilities in the FORTRAN language are regularly implemented on 
individual computers. GRAPE does provide the capability to check 
"line" oriented input/output such as might be read or written on 
teletypes or line printers. No help is provided for checking forms 
of 1/0 such as binary output to a magnetic tape. 

The operation of GRAPE, as described in Section I1 makes 
certain errors almost impossible to miss. Errors 4,5,6, and 7 
fall into this category. Infinite loops, in particular, are 
delightful to watch in execution. Figure 24 is an unnecessarily 
complicated program to do integer multiplication by successive 
addition. In it is an error in which attempting to square a number 
causes an infinite loop. The error, and a possible correction, 
stand out vividly when the program is run under GRAPE as shown in 
Figure 25. 

GRAPE does a good job of calling type 8 errors to the 
attention of the programmer. Since expressions are evaluated 
during execution, the particular values which must be separately 
dealt with are relatively easy for him to notice. Similar to this 
is type 9 since the boundary conditions are possible special situ- 
ations. The programmer can watch how these conditions and values 
are treated by the program and be satisfied that all is well. This 
is particularly useful if these conditions are not explicitly set 
by the programmer during the normal (non-GRAPE) execution of 
the program. Using GRAPE he can preset values which would normally 
be calculated and can .avoid execution of the statements which do 
calculate these values. 

With GRAPE, errors 10, 11, 1 2  are readily detected because 
of the feel the programmer has for his own program. If he sees, 
brightened in front of him, that COEF equals 45.2 and that 
because of this the routine that handles zero coefficients is entered, 
he will recognize that he wrote his test statement backwards.* 
If he sees that the first value of the variable SUM is 25,490, 
he knows he forgot to initialize it. Likewise he knows where his 
output is being done, and if he sees his carefully calculated 
results being set to zero before the output section is reached, 
the programmer will react. 

*This kind of information simply would not be available without 
GRAPE type operation. 

7 9  



C C=A*B WITHOUT MULTIPLICATION 

M=A 

N=B 

c=o 

IF(M.EQ.O)GO TO 30 

IF(N.EQ.O)GO TO 30 

10 IF(M.LE.N)GO TO 2 0  

C=M+C 

N=N-l 

IF(N.GT.O)GO TO 1 0  

GO TO 30 

20 IF(M.GE.N)GO TO 10 

C=N+C 

M=M- 1 

IF(M.GT.O)GO TO 20 

30 PAUSE 

Figure 24. Program With an Infinite Loop 

30 



Cycles 2,4,6, ... 10 13 IF(M.LE.N)GO TO 20 

20 a IF(M.GE.N) 

Figure 25. Execution Of An Infinite Loop 

81 



The GRAPE display technique helps the user detect type 13 
errors by calling his attention to the line as it is being 
executed and by displaying the value of each variable. If one 
sees his own program say IF (2 .EQ. 25340) when something 
approaching equality was expected, he will suspect something is 
amiss. Errors of type 14 usually result in values which are 
thousands of percent off; wrong variables or a neglected division 
are the typical mistakes." 
for the programmer to miss. For the rarer type of arithmetic 
mistakes, such as initializing pi to 3.17, only hand calculations, 
with GRAPE doing the computer work perfectly, will catch the 
error 

GRAPE makes these errors impossible 

*Personal experience plus programmer survey. 

82 



IV. TIME SHARING HIGH SPEED GRAPHICAL INPUT DEVICES 

4 :1 Central Problems 

Several major design problems must be met when time sharing 
high-speed graphical input devices. 
and the discussion of the effects of the feasible solutions out- 
line the requirements for the graphical input section of a time- 
sharing computer executive system. 

speed graphical input devices which are independent of time 
sharing. First is the fact that input is occurring. Input and 
output are more complicated than straight computing because the 
characteristics of the peripheral device must be considered as 
well as the characteristics of the computer. Second, the input is 
being produced directly by a human and so the relevant character- 
istics of human beings, for example the jitter when someone draws 
a "straight" line, must be considered. Third is the amount of 
computation required. Whatever computation is necessary to accept 
and store input data must be repeated hundreds of times a second. 
Even a few microseconds of computing for each data point will 
consume a large percent of the central processor's computing time. 
One hundred microseconds of computing repeated 1000 times a second 
would be 1/10 the computing power of the machine. Fourth, graphics 
software takes a lot of computer space. A large buffer is 
necessary to store data which may come to the computer at the rate 
of 1000 points per second. If this data is to be instantly avail- 
able for analysis it must be readily accessible and must stay in 
physical memory rather than be put on a storage device. The 
programs to analyze data from a high-speed input device are also 
long and complex, and if one wishes to analyze the data at such a 
rate as to give the human user real-time response to his input, 
then these programs must also be rapidly accessible. 

Identifying these problems 

There are some problem areas in the time sharing of high- 

There are problems which arise because of the time-sharing 
environment which must be solved satisfactorily for the graphical 
section of the executive system as well as for any other section. 
One must ensure that one user cannot affect the data or the equip- 
ment of another user without explicit permission. One must ensure 
that scheduling for service of the various graphical devices is 
done fairly so that one user does not inadvertently get better 
response than another, although all graphics users require better 
response from the system than the teletype users require. One 
must decide how (or if) each user will be assessed for the 
services provided. 

Some problems occur because both time sharing and graphics 
are involved. These a11 have to do with the real-time require- 
ments of the graphics hardware superimposed on a time-sharing 
environment which cannot guarantee access to the central processor 
to a particular user at a particular time. With input occurring 
at such a high rate, the time it takes the system to switch users 
makes it impossible to give control to the graphical user to let 
him process each data point as it arrives. Therefore, the 
executive system must assume responsibility for controlling the 
device and maintaining an input storage buffer that contains the 
input data from the device and can be read by the user. 

83 



In general purpose time-sharing systems, the executive 
system rarely performs a function for the user which the user 
could do himself. One reason for this is that making programming 
changes to the executive is dangerous when many users are depend- 
ing on an error free system, Another reason is that time during 
which control is in the executive is often considered overhead, 
and the cost for this time is shared by all users, Finally,,in a 
time-sharing system when input/output, including paging, is 
required by one user some other user can operate, but when it is 
required by the executive itself no user will run. But there are 
functions concerned with graphical input devices which could be 
performed by the user that are better performed by the executive, 
The following three sections deal with functions related to graphical 
input devices which the executive of a time sharing system must do, 
functions which the executive ought to do in order to provide good 
services for the users of graphical devices, and functions which 
the executive system might do even though the users could also do 
them. 

4.2 What Must Be Provided 

As with any peripheral device, a particular input unit must be 
associated with a particular individual: this allows the individual 
to refer generically to the device type from within a program rather 
than forcing him to specify the physical number and it prevents 
one individual from (accidently) reading or destroying data which 
was meant for someone else. 

As with all input/output, the system executive will control 
the device. This involves responding to the interrupts and accept- 
ing the input data. It also involves sending control signals to 
the device, often at the request of the user. These would include 
turning the device on or off, perhaps changing the rate of inter- 
rupt, perhaps setting some mode control within the device. 

As with other peripherals, the executive system responsible 
for the graphical input must keep track of usage so that each 
user can be properly charged for usage by the system. 

Another function which the system must perform comes about 
because these devices may be interrupting the computer as often as 
every millisecond. The system must collect the input data and 
store it away until the user gets a chance to process it. The 
simplest thing for the system to do is to retain some fixed amount 
of buffer space and to add data words into this space as they 
arrive from the device. When the space is full, the executive 
will collect no more data. The user is responsible for emptying 
this buffer through specific system requests and for informing the 
system that it may once again collect data. 

8 4  



Under certain circumstances this scheme works perfectly well. 
The advantage is that it is fast and requires as little system code 
as one could have and still operate in a time-shared fashion. The 
disadvantage is that it uses a lot of space. For example, although 
the user may get access to the computer on the average of every 
three seconds, he may occasionally be kept off for twice that long. 
If each data point is three computer words long, for the two 
coordinate axes plus a word of control information, and the input 
device generates data once per millisecond, then 18,000 words of 
data will have been sent to the computer in the six seconds between 
his two turns at the machine. Further, even if that much data could 
be saved by the system, if the user could process only five seconds 
of input data during his time slice and could not declare the 
buffer empty, then no data would be collected by the system while 
he was waiting for his next turn. 

For many uses of graphical input devices, the user will 
produce only two or three seconds worth of data and will then wait 
for a response from the computer. A l s o ,  one could equip the 
computer with a lot of memory, and when a graphic input device 
was being used, devote much of it solely to storing graphical input 
data. These are not unreasonable solutions, for even complicated 
curves can be drawn in two or three seconds, and a time-shared 
computer always can use extra memory. 

But the problem is not always so easily solved, In the 
following paragraphs other ways the executive might handle the 
input storage buffer will be considered. 

4.3 What Ought To Be Provided 

4.3.1 Feedback. - The first function the executive system 
should provide to the user is feedback. If the user is writing 
characters, if he is drawing pictures, or if he is manipulating 
an image on the display, he must be able to see what he is drawing 
before his program has had a chance to analyze his input. There 
are certain times when one is interested solely in inputting two 
dimensional information to the computer. For these uses, the 
graphical tablet can be used without a display. The Sylvania 
version of the tablet allows one to put a piece of paper on the 
tablet and use a real pen to draw. However, most uses of 
graphical input involve graphical output via a display, and it is 
on the display that the feedback occurs. 

The user program can interpret and deal with input data in 
any way it sees fit. But f o r  the few seconds between user turns 
on the machine during which the system must provide the feedback, 
a linear mapping from the surface of the tablet to the area of 
the display reserved for tablet input is sufficient to show the 
user what he is drawing. In the simplest case, the tablet 
surface is mapped to the entire display face. This lets the user 

8 5  



"write" anywhere on the display. For the wand there is the 
problem of representing three dimensions on a two dimensional 
surface in such a way that the user can continue to draw. 

Whatever the display mechanism, information must be put out 
on the display that corresponds to the information presently in 
the input storage buffer. This temporary information is deleted 
from the screen at the same time that the user takes the data from 
the input storage buffer. Since the coding necessary to put points 
on a display is different from the coding of the points which the 
tablet gives to the computer, a separate feedback buffer is needed. 
This feedback buffer has points recorded in display format and is 
put on the screen every time the user's display is refreshed. 

The information in this feedback buffer is used only by the 
system, never by the graphics users, and so the form of this infor- 
mation can be adjusted to reflect characteristics of the display 
being used. Such action is desirable because for a given display 
some codings of this point information may take even more space 
than the input storage buffer takes. Also, for a given display 
some codings of this information may take longer than a single 
refresh cycle to put on the screen. For example, if the display 
has a constant time vector generator (one which takes the same 
amount of time to draw any length vector), one might display the 
stylus trace by vectors connecting every fifth data point rather 
than every data point. This input 
appear as /)J 

. .  might temporarily ...... 

This scheme would save both display time and feedback buffer 
space at a rather small cost in system compute time. If the 
input buffering technique being used is to keep loading the buffer 
until either it is full or the user is ready to process data, then 
this scheme works well. The feedback buffer must contain informa- 
tion for exactly one fifth the number of points that the input 
storage buffer can contain. It will be seen later that it may be 
desirable to have a much more complicated handling of graphical 
input data. 

4.3.2 Data Compression. - The technique described above can 
be employed because of an important feature of graphical input 
which distinguishes it from other high-speed input such as magnetic 
tapes. There are only small differences between successive data 
points compared to the possible difference between two random data 
points. This feature of graphical input can also be used to save 
space in the input storage buffer. For each data point, one must 
store only the difference between it and the previous data point. 
With the high sampling rates which these devices need in order to 
be effective drawing tools, it may take only one half a computer 
word to describe the difference in all the spatial coordinates 
plus the device mode (e.g., the position of the pen point switch). 

86 



Thus, half a word might easily serve to hold information pre- 
viously requiring three words: X coordinate, Y coordinate, mode. 

Although optimizing space might not seem crucial in temporary 
buffers, these are buffers which may run to 10,000 or more words, 
and which, by their real-time requirements, must probably remain 
in physical memory. Therefore, space savings by a factor of 6, 4, 
or even 2 is worth considering. It does however take computer 
time to effect this space savings, but one other fact settles the 
situation in favor of using this simple form of data compression. 
For drawing, the graphical input device user is himself primarily 
interested in relative differences, and he would have to compute 
the differences if the executive system did not. 

There is one other function that the executive system can 
perform on all the data points which early use of the graphical 
input tablet has demonstrated is valuable (ref. 12 page 8). This 
is averaging each data point with the previous several data points 
before recording it. This has the double effect of reducing the 
slight jitter one has while drawing and of minimizing the impor- 
tance of hooks at the beginning and end of lines. 

4.4 What Might Be Provided 

4.4.1 General. - There are three arees in which the 
executive system might reasonably perform functions which could 
be performed by the user when he has control of the central 
processor. Whether or not these are actually done by the executive 
depends on two things. First, the amount of time the systems 
programmers are willing to spend making the graphical devices 
convenient to use. Second, the extent to which the executive 
system is willing to give extra time and access benefits to the 
graphical device user under time sharing. A poorly supported 
graphical input device will be practically unusable in a time- 
sharing system. As long as these devices promise to aid in 
problem solving, it is false economy to oblige users to work from 
the less demanding teletypes. And lack of software support is an 
effective way of denying access to these devices. 

The types of functions which the system offers to perform 
for the user are functions which it appears all graphical input 
device users will want and would have to do for themselves. It 
should be true that there is some over-all savings (in space or 
time) by having the executive system perform the operation on 
its time rather than have the user do it. Thus, data averaging 
is something which will be done by all users. Furthermore, it 
would cost each user a pass through the data to do the averaging, 
but it can be done by the system while the data point is being 
stored away. 

8 7  



The three areas are (1) more 
(2) mare complicated buffering to 
mode analysis. 

4.4.2 Data Reduction. - The 
executive system might perform on 
input device may involve reducing 

complicated data reduction, 
permit continuous input, (3) 

data reduction which the 
the data points from a graphical 
the precision of the data and/ 

or reducing the quantity of the data. 

If the data from the device has more bits of accuracy than 
the user needs, he can perhaps save space in the computer and 
save time during his own data analysis by requesting that the 
precision of the data be reduced. This is equivalent to dividing 
the range of data into discrete areas. Reduction of precision 
can be done on each data point as the point is received by the 
computer. Throughout this section the four data points 

(27,361 (29,701 

corresponding to four successive X,Y coordinate pairs from a 
graphical input tablet will be used as an example. If the user 
requests that his input data be reduced in precision by a factor 
of 10 in the X dimension and 5 in the Y dimension then the result- 
ing data points are (10 ,15)  (20,351 (20,701 (10 ,65) .  

Here one must realize that there is another dimension beside 
X and Y which is being recorded implicitly. This is the dimension 
of time. In the analysis of data from graphical input devices 
time can be as important a dimension as any of the spatial dimen-' 
sions. It need not always be true that spatial coordinates are 
measured and recorded, while time serves as the metered dimension 
whose value is known implicitly. For example, one records the 
times when a racer completes each lap of a race, and one can 
conceive of computer controlled devices which are metered along 
some other dimension than time. 

A reduction in precision along the metered dimension simply 
involves recording only every Nth data point. For many purposes, 
such as drawing straight lines or pointing instead of drawing, the 
data rate of the graphical tablet is higher than necessary, and a 
reduction in the precision along the time dimension will certainly 
save computer space and computer time for both the executive 
system and the user. In the example of this section a reduction 
by a factor of two in the precision on the metered dimension 
results in the data points (18,15)  (29,70). 

The precision could be reduced on both the measured dimen- 
sions and the metered dimension giving data points (10,151 (20,70). 
Furthermore, reducing the precision of the data may be done when- 
ever the quantity of the data is being reduced. 

8 8  



Reduction in the quantity of data is more complicated, and it 
will be the topic of the rest of this section, This reduction 
involves selectively discarding data according to user supplied 
specifications, The reduction must be applicable at the time the 
data point enters the computer, and it must not require any search- 
ing back through previous data. What we are looking for is an 
indication that some data is redundant. But we must know this 
before doing any real analysis of the data. The single general 
criterion which leads to such reduction is whether the present 
data point is sufficiently close to the previous recorded data 
point to be partially or totally disregarded. 

The actual numbers which determine whether one data point is 
close to another must be supplied by the user, but there are 
various ways in which this type of reduction can be applied. It 
may be that a data point is cldse enough to the last recorded 
data point to be disregarded if the difference between their values 
in a given single one of the measured dimensions is smaller than a 
user supplied numberl or the two points may have to be close along 
a combination of the dimensions. For each of these two situations 
the data point can either be disregarded completely or its value 
along the other dimensions can be recorded. These four situations 
will be treated in the following paragraphs, When data points are 
occasionally being discarded completely, care must be taken not 
to lose the value of the non-discarded points along the metered 
and implicitly recorded dimension, Specifically, this means that 
a count must be maintained of the number of data points in a row 
that have been discarded completely. This count is put into the 
input storage buffer preceding the next data point that is 
recorded there. 

The first situation is using a single measured dimension to 
invoke the data reduction and recording all other dimensions. 
Here each data point is compared with the previous recorded data 
point along the chosen dimension,. say X coordinate to X coordinate. 
If the difference is less than some value previously supplied by 
the user, then only the values along the other dimensions are 
recorded. In the example of this section if 10 in the X dimension 
were the criterion then the data recorded would be 
(18,15) (,36) (29 ,70 )  (15,68), That is, the X value of point 
two was sufficiently close to the X value of point one to warrant 
not recording it. Had 15 along the X dimension been the criterion, 
the data recorded would have been (18,151 (,36) (,70) (,68), In 
the input storage buffer, a reduced data point should take less 
space to record., Of course some mark must be used in the buffer 
to indicate that the present point is a reduced one. As 
mentioned above, this form of data reduction could be applied to 
data whose precision had already been reduced. 

89 



The second situation holds if it is decided to totally 
disregard points which are sufficiently close. 
the system will put a count of discarded points between recorded 
points. For the example in the middle of the previous paragraph 
the recorded data would be (18,15) 1 (29,70) (15,68). For the 
example at the end of that paragraph the recorded data would be 
(18,15) 3. It is anticipated that these counts will often be much 
higher. 
ical input stylus stationary for just a few seconds will generate 
thousands of data points all of which are almost identical. Once 
again, this reduction can be applied tc points of reduced 
precision. 

In this case, 

This is apparent if one considers that holding a graph- 

For situations three and four, closeness along some com- 
bination of measured dimensions is what determines redundancy. 
The question which must be answered is what do we mean by com- 
bination. It may be closeness along at least one of the chosen 
dimensions; it may be closeness along all of the chosen dimen- 
sions; it may be closeness according to some function of the 
chosen dimensions. 

Both of the first two can easily be provided by the system. 
Specification by the user is simply a critical value for each 
dimension being tested and an indication of whether the logical 
results of the tests are to be OR'ed or AND'ed. If in our example 
the critical X value is 5, the critical Y value is 5, and the 
results are to be OR'ed, the recorded data is (18,15) (27,36) 
( , )  (15,68).* Had there been a 2 dimension, its value would have 
been recorded in all four data points. Also had the fourth data 
point been (15,33), then the recorded data would have been 
(18,151 (27,361 (,)  ( , )  with separate recordings for both the 
third and fourth points. If the results of the closeness tests 
were to have been AND'ed together, then none of the data points 
would have been partially disregarded. If instead of only 
partially discarding redundant data points as has been done so 
far in this paragraph, we totally discard them, then the first 
OR example is recorded as (18,15) (27,361 1 (15,68); the second 
OR example is (18,151 (27,361 2; the AND example still has no 
points discarded. 
values on all measured dimensions, the results AND'ed together, 
and redundant points totally discarded, has a simple geometric 
representation. 
received from a graphical input tablet. As long as the tip of 
the stylus remains within that square the data points are simply 
counted. When the stylus moves out of the square, a new X,Y 
coordinate pair is recorded and a new square is imagined. 

This last reduction, with equal critical 

Imagine a square around the first data point 

~~ ~ 

*Note that point four is sufficiently close to point three but 
point three is not recorded on the chosen dimensions. 

9 0  



The third possibility mentioned above about a combination 
of dimensions is closeness along some function of the dimen- 
sions, Implementation within the executive of such data reduc- 
tion is reasonable if many users will be taking advantage of it. 
The percent of users which constitutes "many" depends somewhat 
on the difficulty of the implementation and hence the burden that 
the executive system and, indirectly, all the users have to 
support for the existence of any particular executive function. 
With present devices and applications, no such data reduction 
function of multiple measured dimensions belongs in the executive 
of a general purpose time-sharing system. An example of a 
function which is easy to implement but few people would use is 
one which lets AND and OR and parentheses be used in the specifi- 
cation. Closeness could then be defined as some expression 
such as 

X s  10 OR A Y  5 15) AND Z 5 15 
An example of a function which more people would use but which is 
much harder (in the overhead sense) to implement, is that two 
two-dimensional points (X Y ) and(X2,Y2) are close whenever 1' 1 

is less than some user supplied value. This computation defines 
closeness as a circle around (X,Y> similar to the square used 
earlier. Only if almost all the graphical input device users of 
the system were going to use this technique would it be put into 
the executive. 

There is a degenerate case of data reduction. It is the total 
elimination of one of the dimensions. On a measured dimension it 
can be done by reducing the precision of that dimension to zero, 
However, if such reduction is going to happen often, either because 
one drawing device is going to be used in lieu of another drawing 
device of fewer dimensions (e.g., a wand to simulate a tablet) or 
because some general purpose device which functions as a multi- 
dimensional graphical device is often run at less than maximum 
capability, then the supervisor could easily eliminate that 
coordinate during input and shorten the vector representing each 
input point by one unit, 

One can also disregard the value of the metered dimension 
but still maintain the sequential order of the data points by not 
counting points which are totally discarded due to the other forms 
of data reduction. The effect of this scheme with the drawing 
devices is to record where the stylus was but not how long it was 
there. This method of recording data may be quite sufficient for 
some graphical input device applications. 

91 



4 . 4 . 3  Improved Buffering, - There are three ways in which 
more sophisticated buffer control can be usefully employed, The 
first is a simple change to the feedback buffer, The second is a 
radical change to the input storage buffer and then by necessity 
to the feedback buffer. The third is a change in the method of 
reading the input storage buffer. 

First is the feedback buffer, This change is applying the 
data reduction principles of the previous section to that buffer, 
The buffer provides vital feedback to the user while he is draw- 
ing but before the input stream has reached his program for 
analysis. We have already noted that there is no need to main- 
tain the accuracy in the feedback buffer that the system maintains 
in the input storage buffer. In fact, the system designers can 
choose just when two successive data points are sufficiently 
close to one another that displaying the second of them for the 
few seconds will not be of any benefit to the user. This method 
of data reduction in the feedback buffer shows what is being 
drawn as an evenly spaced dotted curve, This is preferable to 
displaying every Nth point, which would produce heavy patches 
of light at corners where one draws slowly, and only occasional 
dots in the middle of lines where one draws rapidly." 

The decision as to whether to spend system time do.ing this 
reduction for the feedback buffer depends solely on the character- 
istics of the display hardware. If the display has a relative dot 
function such that information which is going into the feedback 
buffer takes little space to record and little time to display, 
then data reduction is not warranted. But if the feedback buffer 
takes a lot of memory, or if displaying the buffer taxes the 
capabilities of the display, causing flicker in the rest of the 
picture, then data reduction is worthwhile. 

The second change to the buffers is more complicated, During 
normal operation device input information is appended to the bottom 
of the input storage buffer at regular intervals by the executive 

*One counter example is a physiological test in which one is 
required to hold the device as steady as possible and in which 
the brightness (due to multiple points) on the screen provides 
the feedback. Precise instantaneous feedback is necessary. The 
user should be able to turn off all special functions provided 
by the executive system as long as the system can somehow limit 
the overhead in time and space incurred by any one user, One does 
not, however, have difficulty in finding an example so demanding 
of computer resources that time sharing is contra-indicated. 

92 



and information is depleted in large chunks from the top of the 
buffer at irregular intervals by the user. If the user gets to 
run the machine on the average of every three seconds he must be 
able to process at least three seconds of input while he is ac- 
tive. With this method of buffer control, input must stop when 
the buffer is full and not begin again until the buffer has been 
completely emptied. 

But it would be convenient, and for some applications it 
might be vita1,i.f input could be continuous ever, allowing for the 
vagaries of time sharing. The method to use is a wrap-around 
input storage buffer with separate pointers to indicate the next 
location to be written into by the executive and the next location 
to be read from by the user. The word in an input storage buffer 
of length N to be read by the user or written by the system after 
word N is word 1, although when the user asks the system for 
data from the buffer he gets it in its proper order. The system 
will not record data in the buffer if the write pointer catches up 
to the read pointer, and it will not transmit data from the 
buffer if the read pointer catches up to the write pointer. As 
long as the buffer is able to hold, say, twice as much input as 
normally arrives between two successive user opportunities at 
the central processor, input will be continuous and can proceed 
simultaneously with analysis. The user can take data from the 
buffer at whatever rate he chooses. This is easier for the user 
and will improve his interactive response as well. 

A wrap-around input storage buffer can only function with a 
wrap-around feedback buffer. And unless the nature of the data 
in both buffers matches in format, deleting code from the feed- 
back buffer takes additional information in the input buffer. 
There must be pointers from the latter buffer into the former to 
indicate how much code can be deleted. 

Finally, there is a change that can be made in the way the input 
storage buffer is read. Because the storage of raw data takes a 
lot of computer space and because the user may deduce that while 
he can analyze some of the data which he has read from the buffer 
he cannot yet analyze the rest of it, the user may find it con- 
beniqnt to separate the two functions of reading infprmation from 
Vhe buffer and deleting information from the buffer, For example, 
a user might read 200 words from the buffer, discover that he 
could process the first 150 words but did not yet have enough 
input data to process the last 50, and delete only 150 words. 
Then the next time the user read information from the buffer, 
the first 50 words he read would be the ones which he did not 
delete. 

4.4.4 Mode Analysis. - The third major area in which the 
time-sharing system executive might assist the graphical input 

93  



device user is called mode analysis. Beside the coordinate infor- 
mation available from graphical input devices, most such devices 
have just a little more information which will usually be inter- 
preted as control information by the user. Most standard light 
pens have a spring loaded two position switch. The common use of 
this switch is that the pen reacts, in either a software or hard- 
ware sense, to light only if the switch is pressed. Both the 
Sylvania and the Bolt, Beranek, and Newman commercially available 
versions of the graphical input tablet have a pair of two position 
markers which are read into the computer along with the X and Y 
information and provide some slight indication of the distance of 
the stylus from the surface of the tablet. One simple use of this 
Z information is to disregard data if the stylus is not directly 
on the tablet. 

These few extra bits of information are often used to indicate 
that certain data is to be disregarded and the executive system can 
work to both its and the user's advantages by letting these bits 
determine the general mode in which the device will operate. No 
such information is derivable by the system from simple analysis 
of the basic coordinate data, thus only these mode bits are singled 
out for special treatment. The user is permitted to specify what 
he would like the system to do for various configurations of these 
bits. 

Broadly looking at the role of the executive system with 
regard to graphical input devices, it accepts data from) ;the device 
at a certain rate, does some data reduction on the data, records 
it in an input storage buffer, records it in a feedback buffer, 
and transmits it to the user. 

First of all, the data input rate can be different for 
different settings of the one, two, or three bits which constitute 
the mode value. Typically, one might not be very interested in 
input values unless the stylus is against the tablet. Therefore, 
one might reduce the input rate to ten points a second until the 
mode value indicated that the stylus was once again down. Even 
though two bits of mode information means there are four differ- 
ent mode values, a user could be interested in just one of the 
bits. He might also set one input rate for mode value equal 0, 
a second rate for mode value equal either 1 or 3 ,  and a third 
rate for mode value equal 2 .  

Similarly, one might wish to change data reduction techniques 
when the mode changed. The test for mode is made as each point 
enters the computer and the change in data reduction can be made 
at that time. Since the mode value is recorded in the input 
storage buffer along with the coordinate values, the user will 
know when the change occurred. 

9 4  



Third, perhaps information should be recorded in the input 
storage buffer only for certain values of the mode bits. As 
usual, a count is maintained and each time a point is recorded 
in the input buffer, the total number of non-recorded points 
since the last recorded one is stored with it. With two reasons 
for disregarding points, closeness and mode value, the system 
may keep and record two counts instead of one. 

It is even easier to apply mode value analysis to the fourth 
system function, recording in the feedback buffer, since there is 
no necessity for counting unrecorded points. A simple test for 
appropriate mode value is made before the point is put into the 
buffer. 

The mode value can also affect the fifth system function by 
determining when the input storage buffer is transmitted to the 
user. The program which uses a graphical input device will often 
be in a situation of input wait, that is, waiting for a peripheral 
device to complete input before processing can continue. The 
graphical device input wait is different from input wait for, say, 
exactly 100 words from a magnetic tape, because in general only 
the user can tell whether he has enough input data from the 
graphical device to analyze that data. However, if the mode value 
provides the clue that sufficient data is in (e.g., data will be 
processed as soon as the stylus is lifted from the tablet), then 
the user can put himself into input wait and the executive system 
can "awaken" him as soon as the proper mode value appears in the 
input stream (or as soon as either buffer is full). Thus the 
user will be scheduled to run only when he is sure he has some 
computing he can do. 

V. EXPANSION AND CONTRACTION OF GRAPHICAL PROGRAM ANALYSIS 

5 . 1  More Powerful Hardware and Software 

GRAPE is a display oriented system for higher level language 
program analysis. It is worth trying to anticipate developments 
over the next few years in computer displays and in computer 
languages to see what effect they might have on the GRAPE method 
of program analysis. We shall first investigate whether improve- 
ments to the hardware could or should affect GRAPE. These 
improvements are ones which change the user's view of displays, 
not simply improvements to the display circuitry. 

95 



The enhancement to displays in which research is currently 
being done is the addition of the third spatial dimension (Van Dam's 
work at Brown University and refs. 13, 14).* While this work is of 
interest in many graphics areas, it does not appear to be useful in 
program analysis, An exception to this might be in - looking at three- 
dimensional data structures. Since "real" objects are all 
three-dimensional, such capability is valuable in display work. 
However computer program data structures can be any number of 
dimensions, therefore this use of three-dimensional displays 
is limited. A discussion of the failure of an attempt to use 
three-dimensional displays to view four-dimensional objects can 
be found in reference 15. The ability to have some information 
coded in the third spatial dimension is valuable, but this can 
be done using display features such as variable intensity, winking, 
or multiple colors, and does not demand a true third dimension 
which is as complex as the two spatial dimensions of the display 
face. 

A computer program is one dimensional in that it consists of 
instructions to a computer to be executed serially. The standard 
way of writing programs takes a second dimension, with statements 
written horizontally and aligned vertically. Programs are always 
written in two dimensions, such as on a piece of paper. The 
languages themselves are designed to be written in two dimensions. 
The third spatial dimension is not used in writing computer 
programs 

A program structure such as 

IF X (  0 do A 

IF X = 0 do B 

IF X >  0 do C 

does not add a third dimension of time because no true simultaneity 
of operation is implied. The dimension of time is used in writing 
computer programs only to determine the ordering of instructions 
in the first spatial dimension. 

One could consider using the third spatial dimension to 
represent the time dimension while the program is operating. 
Rather than modifying a single two dimensional plane, every 

* 
The ability to draw patches of light, rather than just beams, is 
also being investigated, but this is not of value to a display 
system concerned primarily with characters. 

96 



execution cycle could add a planar picture in front of the 
previous planes, But people do not work this way. Depth infor- 
mation cannot be sorted out the way lateral information can, 
Individuals do not choose to look at objects which are set up on 
the visual Z axis if they could instead be set up in a single 
plane at a constant distance from the eye. Both the obstruction 
of far objects by near objects and the required muscular change 
of eye focal depth are causes of this. The conclusion is that 
three dimensional displays do not offer an improvement in the 
techniques of computer program analysis, 

gramming computers, Again improvements refer to the userPs view of 
these languages, not the methods by which they are compiled. Flow- 
chart programming, that is specifying a program by a flowchart rather 
than by a serial list of written instructions, has been discussed 
and partially implemented in the past few years (Project Grail at 
Rand Corporation and refs. 16, 17). The general use of flowcharts 
by programmers could indicate that flowcharts are a more natural way 
to write programs than are lists of instructions. Flowchart pro- 
gramming is similar to other higher level languages in that from 
the user's side it is computer independent, and the precise method 
of implementation.of each flowchart instruction is not of direct 
interest to someone doing program analysis. The differences bet- 
ween flowcharts and the languages we have been discussing are that 
some of the syntax of the flowchart language, especially control 
functions, is in the form of shapes rather than characters, and 
that the language is two dimensional in representation. Within 
nodes of a flowchart, one will continue to write expressions and 
other instructions which have no two dimensional analogue. 

We next investigate improvements in the languages used for pro- 

This improvement in programming notation does not alter the 
type of information a flowchart programmer would want ror program 
analysis, and many of the ideas of GRAPE would be directly 
usable. Visually presented timed execution of the source flow- 
chart and extensive control over the rate of execution are still 
important concepts, So is the idea of condensing a collection of 
nodes to increase speed of execution and improve visibility. One 
will certainly be interested in inserting break points, saving 
the present flowchart, and restarting the execution of the flow- 
chart. 

The displaying of the operating flowchart is seriously 
complicated by the fact that the program extends in two dimensions. 
One simple solution is to permit rolling in both dimensions much 
as one might scan a map, However, distances need not be preserved 
on a flowchart (or on any "graph") the way they must be on a map, 
and moving nodes around so that the maximum amount of information 
is on the screen at any one time should be done by the system. 
Since the density of code per square inch is not normally as high 
in a flowchart as it is in a linear program, zooming in and out 

97  



towards the program by changing the size of characters and the 
closeness of nodes would be possible. In fact this will 
probably be necessary since condensing a set of nodes will be 
natural to do only if all the nodes to be condensed are on the display 
face at one time. 
chart which is not on the screen, a decision will have to be made 
as to what nodes of the flowchart should be displayed. Most 
programmers are in the habit of drawing flowcharts from top to 
bottom and left to right; therefore, putting the current node 
near the top left is a good first guess. But clearly the display 
techniques will not be easy to develop, 

When the program jumps to a node of the fiow- 

Since flowcharts are two dimensional, flowchart programming 
will develop only where two dimensional input is available. The 
problems of editing will probably already have been solved on such 
a computer system. The primary difficulty in performing GRAPE 
type analysis on flowchart programs will undoubtedly be the 
display handling discussed above, but flowchart languages would 
seem to have enough in common with other higher level languages 
to make GRAPE useful in flowchart program analysis. 

5 .2  Less Powerful Hardware 

5 . 2 . 1  Display, Light Pen, and Keyboard without Graphical 
Tablet. - Reductions in the capability of the input/output equip- 
ment and their effect on GRAPE will now be examined. The hard- 
ware and software blocks necessary to run GRAPE as described in 
Section I1 were outlined in 3 . 1 .  Certain of these features can 
be eliminated, and a restructuring of the others defines a 
system which still retains sufficient power to serve as the tool 
for program analysis. 

GRAPE shows exactly what the source program is doing as it 
executes, as opposed, for example, to a scheme which only shows 
which statement is executing. Therefore, it must understand each 
step of the source program and must present this information to 
the user; so both the properly constructed compiler and the execu- 
tion phase of the system are necessary. 

GRAPE is display oriented. Even though the material on the 
display face is characters arranged in lines, no line printer 
could produce the information, including context, which GRAPE 
requires. The noise, the speed, and the movement of the paper 
make any line printer unfeasible as a substitute. Certain hard 
copy generators produce sheets of paper that contain all the 
information which would be on a display face. Hundreds of sheets 
of paper, each of which shows a new execution cycle, could 
substitute for a "soft" display. But this approach overlooks the 
fact that these devices actually are displays with additional 
equipment added to produce the hard copy. Also, the fastest hard 

9 8  



copy generators take ten to thirty seconds to produce a picture. 
Therefore, the display is necessary to GRAPE, and so is the 
display support software. 

However, the other major piece of hardware is not as vital 
for GRAPE operations. The graphical input tablet is not yet a, 
common device. Furthermore, the software support, including 
character recognition, for this device in any particular computer 
installation is time consuming both for the system programmers to 
produce and for the run-time computer system to use. One should 
investigate whether another input device can reasonably be sub- 
stituted for the tablet. The input device regularly associated 
with displays is the light pen. It is much less demanding of 
central processor time to operate and is much more frequently 
available than the graphical tablet. 

The primary difference between the two input devices is that 
the tablet is a drawing device and the pen is a pointing device. 
Although the drawing of straight lines can be done with a light 
pen and tracking cross, the light pen cannot be used to draw small 
characters. However, it will have been seen that use of the 
graphical tablet in source program execution, execution functions, 
and some of the editing functions is strictly as a pointing device. 
For changing characters in the source program code a keyboard,in 
conjunction with a light pen,can be used. 

Using the light pen as the major input device keeps the 
user's attention and activity on the display face. Thus he is 
still interacting directly with his program and not with an 
intermediate system. Source program execution occurs as 
described in 2.2. The same factors which led to the earlier 
design of the speed control apply here. A speed line like the one 
used in the implementation of Section I11 (Figure 19) is what is 
needed. If possible, a mechanical structure should hold the pen 
in position while the program is executing. Pens are normally 
attached to the right side of displays and a speed control on the 
left would interfere with the line numbers. As a result, this 
control must be on the right. The speed control works just as 
it did in Section 11; moving the control to STOP or to and away 
from STOP has the same effect that was described earlier. 

On most light pens is a push button. Pressing that button 
while the pen is at either end of the speed line causes a function 
which was described earlier. At the fast end, all delay between 
statements is eliminated. At the STOP end, a single cycle of 
execution occurs. If there is no such button, the top of the 
speed line must cause execution at the high speed. The slowest 
continuous execution speed is slow enough that one could touch 
it and then touch STOP to perform single cycle execution. 

99 



Functions are represented by messages on the screen as in 
Figure 26, Touching a message with the light pen causes the 
function to occur, just as it did with the graphical stylus, 
Once again a single device is used for speed control and for 
function control, For many of these messages, one or two line 
numbers must also be touched. If a new function is touched 
before all the line numbers for an old function have been input 
then the old function is not performed, Feedback for these 
functions which need line numbers is provided by brightening the 
function until the line numbers have been touched. 

When the source program is executing, none of the light pen 
messages are displayed. When the speed is set to STOP, the top 
of the screen looks like Figure 26, RESTART, SAVE, and TRASH are 
the same as described in Section 11. ROLL is as in Section 11, ex- 
cept since the light pen is not fine enough to allow multiple 
rolling speeds, ROLL is a constant two lines per second, PAGE, 
as described in 3.2,allows rapid movement through a program, 
Touching-+,r or followed by one, one, or two line 
numbers respectively institutes the function. If the line which 
is touched following r o r  D already has that function, then the 
function is removed from the line. 

The last three messages involve the keyboard. With these 
either the carriage return or the line feed is used to terminate 
keyboard input. If one touches VARIABLES and then touches a 
presently displayed variable, it will be removed from the screen, 
If one touches VARIABLES and then types the name of a source 
program variable, it will be displayed. If after typing the name 
of a variable one also types a value, the variable is set to the 
value, After touching REFERENCES one can type the name of a 
variable to see all references to that variable, a statement label 
to see all references to that statement, or a carriage return to 
see the unused areas of the program, Touching EDIT followed by a 
line number allows one to edit that line from the keyboard, The 
intraline editing instructions from QED (ref. 18), the SDS 
940 time sharing system editor, are a good set of editing instruc- 
tions. &ED is based on TECO, which is a display editor designed 
at the Massachusetts Institute of Technology, Its instructions 
are appropriate for fast editing where feedback from a display is 
available, Touching EDIT followed by two line numbers moves the 
first line after the second line, However, when the two are 
successive lines, then space is opened to permit inserting a line 
from the keyboard. 

GRAPE, in this configuration, preserves the notions of 
complete feedback in the source program language, largest possible 
window into the program, retention of the display as the primary 
area of interest, and extensive control over execution speed, The 
appearance of an intervening "system" is kept to a minimum although 

100 



Figure 26.  Display Messages When t h e  Speed i s  a t  STOP 

101 



the sense o f  inteKacting directly with the program is slightly 
reduced. Also the operqting instructions which must be mem- 
orized have increased. 

5.2.2 Keyboard and Display without Light Pen. - The next 
reduction in hardware capability is eliminating the light pen. 
All source program execution and most functions work as before, 
but now all input will come from the keyboard. The disadvantages 
are a general transfer of attention to the keyboard and away from 
the program itself, and the clear intervention of a ''system" 
between user and program. In particular, the control over execu- 
tion speed is moved to the keyboard. The speed line is still in 
the lower right of the display and looks like Figure 27. Typing 
a digit from 0 to 8 brightens that section of the speed line and 
runs the source program at the appropriate speed. The 99  is used 
to remind the user that it is the extra high speed which removes 
all delay from execution. Single cycle execution is still natural. 
When the speed is STOP (01, typing 0 executes one cycle. 

Keyboard input always brings out the problem that a single 
character or a short code is not meaningful enough to keep the 
inexperienced user happy, but a mnemonic code of four or five 
characters is frustrating to the expert who must type these codes 
over and over. When messages appear on the screen each message 
is accompanied by a letter which is the code for the function, as 
in Figure 28. One types the function code followed by line 
numbers, variable names, values, or editinq instructions as 
appropriate. 
ate input of an indefinite length such as a new line of code, 

Carriage return o r  line feed-is still used to termin- 

though no terminator is used in conjunction with the speed con- 
trol or with functions such a s d  whose arguments are always the 
same number of characters. 

Two functions which used information from the light pen have 
been slightly modified. First, if the variable name typed when 
VARIABLES is instituted is already on the screen, then it is 
removedfrom the screen. Second, rolling is terminated by a 
carriage return or line feed. 

As with all versions of GRAPE, there is no easy way to 
accidently destroy several minutes of work. This version still 
gives a large window into the operation of a program written in 
a higher level language and still gives the user a feeling of 
"hands on" program analysis. 

5.2 .3  Weaker Refresh Display. - The refresh display used 
by GRAPE does not need many special hardware features. It needs 
the capability of displaying several hundred characters without 
serious flicker,yet have a moderately fast phosphor so that 
changes on the display do not leave smears. 

1 0 2  



STOP 

9 9  

8 

7 

6 

5 

4 

3 

2 

1 

0 

Figure  27. Speed Control 

103 



I, H 
E D I T  
I 

t PAGE4 
J K 

VARIABLES REFERENCES 

t ROLL 4 
L M 

F igure  2 8 .  Display  Messages When the  Speed i s  a t  STOP 

104 



The mode of production of the characters, whether hardware or 
software, is not important. Dot capability is necessary only for 
the feedback associated with the graphical tablets, and one is 
unlikely ever to find a tablet connected to a display that does 
not produce dots, If beam intensity variation is not available, 
brightening some of the program code can be done perfectly well 
by overwriting the same characters twice or three times each 
refresh cycle, Other niceties, such as the use of the &B 
characterp can easily be avoided if necessary. The standard 
display feature of random positioning, as opposed to being obliged 
to write a single stream of characters which starts at the top 
left of the screen and ends at the bottom right, is exceedingly 
useful and is necessary if overwriting is to be done, Display 
subroutining is not necessary in GRAPE and neither is any curve 
or vector generator, 

5.2.4 Remote (Low Speed) Storage Display.. - The most drastic 
reduction to be considered in the capability of the display is the 
substitution of a remote storage display for the directly connect- 
ed refresh display. While the refresh display is completely re- 
painted thirty or more times per second and can be changed just as 
rapidly, the storage display collects and retains information until 
it is completely erased and the process restarted. Although some 
refresh displays are fast enough to produce a typical GRAPE 
picture in one or two seconds, the use of storage displays which 
is becoming increasingly common is as low cost computer terminals 
at the end of telephone lines, Standard telephone lines transmit 
information at such a rate that it would take ten seconds to 
produce a page of program code, Thus the standard mode of GRAPE 
program execution is not suitable for remote storage displays. 
However, these devices provide visual information remotely from 
a time shared computer, They are inexpensive and they do not 
make the computational demand on the computer that a refresh 
display does. The growing and well deserved popularity of storage 
displays requires that we consider a way to use them for program 
analysis 

Keyboard operation for speed control and the institution of 
execution and editing functions are the same as with the refresh 
display and keyboard, But for the display of source program 
execution certain restrictions are apparent, First, it must be 
possible to indicate the execution of many statements without 
rewriting the displayo Second, displaying as many lines as 
possible is advantageous since transferring to a new page of 
program code demands rewriting the display. Third, interaction 
will be from the keyboard as it was in 5.2,2, but not every key- 
board command should cause a rewrite. 

Because this is a storage display each statement execution 
will have to add to the contents of the display face. Indicating 

105 



the results of each statement directly on the statement or 
directly beside the statement will not work for several reasons. 
When execution is stopped there is no way for the user to tell 
what statement was last executing. Also some statements need 
a lot more room than others to display execution. Finally, a 
statement in a loop could be run dozens of times before one 
wanted to rewrite the display. Nor can the program code be 
shifted down one line during the execution of expressions. 
Therefore, a fairly large display face is necessary to display 
all the code plus additional material for every execution cycle. 
The Tektronix cathode ray tube used in several commercially avail- 
able displays (ref. 19) is 8 1/4" by 6 3 / 8 "  and will hold four 
thousand legible characters. 

Since the results of execution cannot be displayed near the 
statement being executed without greatly reducing the number of 
statements that can be displayed, and since it is desirable to 
display as many statements as possible, the display face is 
arranged with the source statements packed in tightly at the top 
of the screen. The results of execution are indicated at the 
bottom of the screen. To perform the packing, unnecessary spaces 
are removed from the displayed code. The code is arranged in 
columns as shown in Figure 29 with the statement continuations 
inserted automatically by the system. The width of each column 
ensures that most of the executable statements in the particular 
higher level language will fit on one line commensurate with the 
number of characters which can be printed on one horizontal line 
of the display. If three columns of code can be displayed on the 
screen, then sixty source program statements could be displayed on 
the top third of the screen. 

Just below the displayed statements is a status line. The 
character on this line indicates whether execution is presently 
occurring: G for GO and S for STOP. When the status changes the 
old character is blocked out and a new one is written. Thus if 
one starts execution by typing 4 (for speed 4 ) ,  then stops it by 
typing 0, the status line would go 

from STATUS: S 

to STATUS: $ . G  

to STATUS: ;$ 63 S 

A similar method is used for displayed variables. The first 
variable requested goes on the bottom line of the screen. When- 
ever its value changes, the old value is blocked out and the new 
value is written. A second requested variable is displayed on 
the second from bottom line. If a variable changes enough times 
to fill a line on the display, then the variable name itself is 
blocked out and the next available line at the bottom of the 
screen is used to continue display of that variable. 

106 



103 - 
104 

105 .c___ 

x -  

1 2 0  _vs_ 

STATUS : $GSG:% 

1 2 1  _. 

1 2 2  

x -  

- 
146 cy 

1 4 7  ____ 

160 _2_ 

161 - 

CONDENSE 

START 

111 1 2 2  

111 

HEIGHT: 2 0 0 0  0 4  

WEIGHT: 3281% 3k@88%82 035i8.fBB 

Figure  2 9 .  D i sp lay  Se tup  

107 



Height : 19 

Weight : 36 

HenPngWir : xw tx xx 

Below the status line is the area for the display of state- 
ment executions. The display for each statement is blocked 
out when the following statement is displayed. Display of execu- 
tion goes across the screen from left to right and then starts 
on the left of the next line. The material displayed is the line 
number followed by the same temporary code that was described in 
Section 11. Understanding the execution will take a little effort 
on the user's part because the results of execution are displayed 
at some distance from the source code and because there is no 
vertical alignment during expression evaluation. When the display 
of execution cycles fills the open area then the display is 
rewritten. The size of the open area depends on the number of 
variables being displayed, and it might be that a program change 
to a displayed variable is what fills up the screen and causes 
the display rewrite. 

The open area in the center of the screen is also used when 
execution or editing functions are input from the keyboard. The 
display is not rewritten after each function is typed. Rather 
they are listed in the open area as they are typed. The functions 
all occur when the user requests that they occur or when the 
open area is filled. One might type 

DELETE 30 

CONDENSE 12 50 

START 10 

before requesting that these functions take effect. In the above 
example, lines 12, 50, 10 refer to the line numbers displayed 
when the instructions were typed, even though these numbers 
might be changed by earlier instructions in the list. The way to 
request the actual occurrence of the functions in the list is 
what one might expect: type 0 for single cycle execution. 

In the interest of saving space and thus on the storage dis- 
play saving time, a11 statements which contain expressions will start 



out condensed. A l s o ,  no messages are displayed on the screen 
when execution is stopped. The user must keep a list of the 
functions and their abbreviations or he must memorize them. 
Figure 28 is appropriate for the storage display as well as for 
the refresh display with keyboard input only, except for one set 
of changes. ROLL no longer exists and the request to PAGE may 
optionally be followed by the number of pages to be turned in a 
single rewrite. PAGE replaces ROLL during display output and 
during the display of multi-valued arrays. The abbreviations 
from Figure 28 are what the user types but the full words appear 
on the screen. 

The sacrifices which have been made in order to save display 
rewrite time cause a user some difficulty in that the print is 
small and the feedback occurs away from the statement. A l s o ,  a 
user might refrain from making some changes because of the time 
it takes to rewrite the screen. What GRAPE on the remote storage 
display retains is the idea of the user seeing his program execute 
and getting a lot of visual feedback in the language of the 
source program. His window into the program remains large and his 
control over the execution speed is still extensive. Because the 
number of separate GRAPE functions is low, it remains an easy 
system to learn and to use. All three types of program analysis: 
teaching, debugging, and understanding, are enchanced by the 
system. 

5.3 Conclusions 

The design for a system of graphical aids for computer 
program analysis has been thoroughly worked out. Many of the 
features have been redesigned several times in order that the 
final system be as invisible to the user, that is as simple and 
natural to use, as possible while remaining a complete system 
with no major desirable features left out. 

The rapid increase in the use of computer driven displays 
and the continued popularity of higher level languages ensures 
the usefulness of such a systzm. This system can be used with 
a wide variety'of graphical input/output devices. 

That editing information on a display face could be done with 
a graphical input tablet, a light pen and keyboard, or with a 
keyboard alone, has already been amply demonstrated. The 
particular questions which had to be answered by an implementation 
were whether the dynamic execution of the source program on the 
display screen did indeed contribute to an understanding of the 
program and whether the control over execution as provided by the 
execution functions was sufficiently broad and sufficiently 
natural. The reactions of the fifty or so people who used or were 
exposed to the GRAPE system were favorable. GRAPE seems to provide 
the capabilities one would like when at a desk simulating the 

1 0 9  



operation of a computer, whether the program is one's own or 
another's, or whether one is an expert or a novice programmer. 

Turning GRAPE into a production system at a particular 
computer installation involves programming according to the 
description in Section 11. It may also involve two other 
programming efforts. First is the preparation of the compiler 
for the higher level language. Today's compilers work only on 
the single computer for which they were written. And few machines 
already have incremental compilers for higher level languages. 
Even if a compiler already exists, GRAPE wants to use it in a 
special way in order to get both the intermediate code and the 
final code. This could involve partial rewriting of the 
compiler. 

The second programming effort which may be necessary is the 
programming of the peripheral devices. Many computer installa- 
tions which have graphical input/output devices do not yet have 
suitable software support for them. Each user must write his own 
input/output package. Although the requirements for this pack- 
age are clear, learning to program a display can be almost as 
time consuming as learning to program another computer. 

Further research is warranted in the area of GRAPE and low 
speed storage displays. An implementation is necessary before 
one can be sure of the display techniques to be used with that 
device. One could, f o r  example, pre-run a section of code to 
determine how much of the source program should be put on the 
screen each time it is rewritten. Further research is also 
warranted in the application of graphical aids during program 
execution to the concept of flowchart programming. 

110 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

QUIKTRAN Reference Manual: International Business Machines 
Corp., Form J20-0017, San Jose, California, 1967. 

Lewin, Morton H.: An Introduction to Computer Graphic 
Terminals. Proc. IEEE, Vol. 55, pp. 1544-1552, 1967. 

Davis, M. R.; and Ellis, T. 0.: The RAND Tablet: A Man- 
machine Communication Device. Proc. Fall Joint Computer 
Conference, Vol. 26, pp. 325-331, 1964. 

Roberts, Lawrence G.: The Lincoln Wand. Proc. Fall Joint 
Computer Conference, Vol. 29, pp. 223-227, 1966. 

Richards, Martin: BCPL Reference Manual. Massachusetts 
Institute of Technology, Project MAC Memorandum M-352, 1968. 

McCracken, Daniel D.: A Guide to Fortran IV Programming. 
John Wiley and Sons, New York, 1967. 

McCracken, Daniel D.: A Guide to Algol Programming. John 
Wiley and Sons, New York, 1962. 

Anderson, Robert H.: Syntax-Directed Recognition of Hand- 
Printed Two-Dimensional Mathematics. Harvard University 
Doctoral Thesis, 1968. 

The Compatible Time-sharing System, - A Programmer's Guide. 
Second Edition, Massachusetts Institute of Technology Press, 
Cambridge, Mass., 1965. 

Ide; Munson; Duda; Hurley; et al: "Session on Hand-Printed 
Character Recognition." Proc. Fall Joint Computer Conference, 
Vol. 33, pp. 1117-1161, 1968. 

Corbato, F. J.; and Vyssotsky, V. A.: Introduction and Over- 
view of the Multics System. Proc. Fall Joint Computer 
Conference, Vol. 27, pp. 185-196, 1965. 

Bernstein, M. I.: Hand-Printed Input for On-Line Systems. 
Systems Development Corporation Report TM-3937, Santa Monica, 
California, 1968. 

Stotz, Robert: Man-Machine Console Facilities for Computer- 
Aided Design. Proc. Spring Joint Computer Conference, 
Vole 23, pp. 323-328, 1963. 

111 



1 4 .  Sutherland, Ivan E.: A Head Mounted Three Dimensional Dis- 
play. Proc. Fall Joint Computer Conference, Vol. 33, 
pp. 757-764,  1 9 6 8 .  

1 5 .  Noll, A. Michael: A Computer Technique for Displaying n- 
Dimensional Hyperobjects. Communications of the Association 
for Computing Machinery, Vol. 1 0 ,  pp. 469-473,  1 9 6 7 .  

1 6 .  Sutherland, William Re: The On-Line Graphical Specification 
of Computer Procedures. Massachusetts Institute of Techno- 
logy Doctoral Thesis, 1 9 6 6 .  

1 7 ,  Christensen, C.: An Example of the Manipulation of Directed 
Graphs in the AMBIT/G Programming Language. Proc. Symposium 
on Interactive Systems for Experimental Applied Mathematics, 
Washington, D. C., 1 9 6 7 .  

1 8 .  QED Reference Manual. Dial-Data, Inc., Newton, Massachusetts, 
1 9 6 8 .  

1 9 .  Advanced Remote Display Station Reference Manual, Computer 
Displays Inc., Waltham, Massachusetts, 1 9 6 8 .  

GENERAL REFERENCES 

1. Brady, Paul T.: Writing an Online [Machine Language] 
Debugging Program for the Experienced User. Communications 
of the Association for Computing Machinery, Vol. 11, 
pp. 423-427,  1 9 6 8 .  

2. Evans, T. G.; and Darley, De L.: On-Line Debugging Tech- 
niques: A Survey. Proc. Fall Joint Computer Conference, 
Vol. 29,  pp. 37-49, 1 9 6 6 .  

3. Lampson, Butler W.: Interactive Machine Language Program- 
ming. Proc. Fall Joint Computer Conference, Vole 27,  
pp. 473-481,  1 9 6 5 .  

4. Schwartz, Jules I.: Online Programming, Communications of 
the Association for Computing Machinery, Vol. 9, pp. 
1 9 9 - 2 0 3 ,  1 9 6 6 ,  

5. Stockham, Thomas G.: Some Methods of Graphical Debugging. 
Proc. IBM Scientific Computing Symposium on Man-Machine 
Communication, Watson Research Center, Yorktown Heights, 
New York, May, 1 9 6 5 .  

112 



C J e  GREEN GQAPE 
c 

COMMON /TDTCOM/ LPNDIM~LPNREGvBRIGHT~TNTONIINTONvINTOFF~CHRMOD~VECMOD~ 
X 
X VDY50,VDXlOnrV I Y 5 A A  r V I Y 9 P 0  

X O R G L N O ~ F N D L N O ~ O R G S P D I F N D S P D , b U T T O N ~ l O ~ ~ ~ S E T D S P ~ 3 ~ ~  

NLCR sLXRO rCYQr) r L X R l  PO r L X R 8  nn rLYR8OO r L Y R 9 0 0  9LXR999  r V I Y 0  r V I  XAI 

COMMON /RUTCOV/ S T P ~ U T ~ B R K P U T I E N D P I J T ~ S P F E D ~ B R I F F L G ~ O R G V A L ~ E N O V A L ~  

COMMON / INPCOM/ NUMST,INPUTl80),STUFF(2nn~ll) 
COMMON /EXCOM/ J ~ , J ~ ~ J ~ , J ~ ~ I V I Z , P L A C E V D S P L N ~ ~ E X L I N E ~ G O T ~ ( ~ ) ~  

X C G O T 0 ~ 9 ~ 3 ~ r P A U S E l 4 1 , E N D ~ 4 ~ ~ R E A D ~ 4 ~ r W R I T E l ~ ~ ~ N O L G T l 9 ~ ~  
X 

X V I Z ( 2 f l O )  

X D B u F ( 2 0 n ) , L R u F ( 2 n n ) , L E T T ~ R ( 4 1 )  

YESLGT(  9 )  rARTHTF(  9 9 3  1 ,VAR( 3 6 )  9DSPVARI 5 )  
COMMON /FDCQM/ K l r Y 2 r L I N F l r L I N E 2 ~ S C R N S Z ~ T Y P E ( 2 O ~ ) ~ P O I N T l 2 0 ~ ~ ~  

CWMON /SUYCOM/ T F Y P l 3 n ) , S P A C F S ( 3 n ) , ~ T A T F ( 2 ~ A 9 4 ) , S T L A B L ( l n ~ ) ~  

COMMON /OTHCOM/ T O T S T r D P F S L N r C H A R H T r D S P L I N r S C R N M X r T O P L I N , O L D R I I T ,  
X BREAK ( 9 sSPDL I N ( 5 9 SQI IARF f 1 3 )  ,L INN\ lY  ( l m  

COMMON /VJRCOM/SUBPFT 
COMMON / A R P C O W / Z A R R A Y ( 4 r 2 n r l O )  

C 
C 

C C INlTl ALlZAVlON 
C A L L  DSPATT 
C A L L  DSPTRNI  1 )  
C A L L  L P N S R L (  1) 
C A L L  SETCON 
C A L L  S E T L E T  
C A L L  SETARR 
C A L L  SETRUT 
C A L L  I N S E R T  

END 

SUBROUTINE SETCON 
CHARHT=64 
I R R T = I 2  
I RFG=8 
I D I M = 4  
I C S I Z E = l O 2 4 + 2 0 4 8  
L P N = 2 5 6  

SCRNSZ = 1 
TOTST = 1 
E X L I N E  = 1 
S U B R E T = l  
K l = l  
K 2 = 9 9 9 9  
L I N E 1 =  1 
B RKFLC=O 
T DPL I N =  1 
P R E S L N = l  

C 
C 

SCRNMX=lO 

L P N D I M Z  -20480t16+LPN+IDIY+ICSIZE 
LPNRFGZ -20480tl6+LPN+IREG+ICSIZE 
B R I G H T =  - 2 0 4 8 @ + 1 6 + I B R T + I C S I Z E  
INTON= - 2 0 4 8 0 + 1 6 + I D I M + I C S I Z E  
I N T O F F z  - 2 0 4 8 0 + 1 6 + I C S I Z E  

VECMOD= -14336 
N L C R = 2 5 7 3  
LXRO= -32767-1 
LYRO= -28672 
L X R 1 0 0 =  LXRO+8n 
LXRBOO= LXRO+770 
LYRBOO= LYRO+600 
L Y R 9 0 0 =  L Y R 0 + 9 0 0  
L X R 9 9 9 =  L X R 0 + 8 2 0  
V I Y O =  5120 
v Ixn= 7168 
VDYSO= 4096+50 
v D x i  no = 6144+1 p n  

CHRMOD= -14080 

113 



C 
C 

41 0 

420 

430 

V I Y S O O =  V I Y O + ~ ~ O  
V I Y ~ O O =  V I Y O + ~ ~ O  
RETURN 
END 

SUBROUTINE SETLET 
DO 410 1~65990 
LETTER (I-64)=1 
DO 420 1~48.57 
LETTFR (1-211=1 
LETTER (37)=hl 
LETTFR (38)=32 
LETTER ( 7 9  1 =43 
LETTFR (4@)=45 
LETTFR I41 )=42 
R=32*2 56 
s=32 
T=R+S 
DO 430 1~194 
READ( I )=T 
WRITE(I)=T 
PAUSE(I)=T 
GOTOII )=T 
END(I)=T 
DO 440 I=1,3n 

44r) SPACFS(I)=T 
DO 450 I = l r Q  
NOLGT(I)=T 
YESLGTI I )=T 
DO 450 J = l r 3  
ARTHIF(IeJ)=T 

450 CGOTOIIpJI=T 
NOLGT( 3 ) =40+R 
NOLGT 1 7 =41*256+S 
YEqLCT(71=L(7)+R 
YESLGTIE)=L(15)+256+5 
YESLGT(91=L(20)*256+L(~5) 
RFPD(Z)=R+L(181 
READ(3)=L(5)*256+L(l) 
READ( 4 1 = L  (41*256+5 
GOTO(Z)=YESLGT(7) 
GOT0(3)=YESLGT(B) 
GOT0(4)=YESLGT(9) 
WRITE(2)=R+L(23) 

C 
C 

30 

WRITE 
WRITE 
PAUSE 
PAUSE 
PAUSE 
END( 2 
END13 
CGOTO 
CGOTO 
CGOTO 
CGOTO 
ARTH I 

3)=L(18)+256+Ll9) 
4)=L(20)*256+L(51 
2)=R+L(161 
3)=L(1)*256+L(21) 
4)=L(19)*256+L(5) 
=R+L (5 1 
=L(14)*256+L(41 
6911=24415 
792 1 =95+R 
8 92 1~24320 
9r3)=24415 
(591)=24415 

A RTH IF ( 6  s 2 ) =95+R 
ARTHIF(792)=24720 
ARTHIF(8,3)=24415 
RETURN 
END 

SUBROUTINE SETARR 
DO 50 I = 1 ~ 3 0  
VIZ(I)=O 
TYPE(I)=O 
DBUF(1 )=O 
LBUF(1 )=O 
POINT( I )=O 
DO 30 J=1,4 
STATE ( I9 J) =O 
DO 40 J=lrll 

114 



4 0  S T U F F ( J s I ) = O  
50 CONTINUE 

DO 100 1=19100 
L I N N U M f I  )SO 
BUTTON t I )SO 

100 S T L A B L  ( I 1’0 
DO 110 I = 1 , 2 6  

110 V A R ( I ) = n  
DO 120 I = 2 7 ~ 3 6  

1 2 0  VAR(  I )  =I-27 
DO 1 2 5  I = 1 9 4  
DO 1 2 5  J = l r 2 O  
DO 1 2 5  K = l r l O  

1 2 5  ZARRAY ( 1  rJ9K)’O 
DO 130 I=1,30 
TEMP ( I )=0 

DO 140 I = l r 5  
140 DSPVAR ( I ) = h  

V I Z ( 1 )  = 1 
T Y P E ( 1 )  = 1 
L INNUM ( 1 ) =1 
I T = 3 2 + 2 5 6  
S T U F F ( l r l ) = L E T T E R ( 3 )  
S T U F F ( 2 r l l = L E T T E R ( 3 8 1  
S T U F F ( 3 9 1 ) = L E T T E R ( 3 8 )  
S T U F F ( 4 9 1 I = L E T T E R ( l O l  
S T U F F ( 5 , 1 ) = L E T T E R ( 8 I  
S T U F F ( 6 , l ) = L E T T E R ( 7 )  

1 3 0  S E T D S P ( I ) = O  

BREAK( l )=CHRMOD 
B R E A K ( 2 ) = L X R l O O  
B R E A K ( 3 l = I N T O N  
BREAK( 4)  =0 
BREAK ( 5 )  = I T + 3 2  
B R E A K ( 6 ) = 1 2 6 * 2 5 6 + 3 2  
SETDSP (1 ) = B R I G H T  
S E T D S P ( Z ) = L Y R O  
S E T D S P 1 3 ) = L X R l n O  
SETDSP ( 4  )=CHRMOD 
SPDL I N  ( 1 ) =  INTON 
S P D L I N ( 2 ) =  VECMOD 
S P D L I N ( 3 ) =  L X R 9 9 9  
S P D L I N  ( 4  ) =  V I Y 5 O n  
S P D L I N ( S ) =  VDY5O 
SQUARE( l )=CHRMOD 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
RETURN 
END 

C 
C 

SURROU 

2 ) = L X R 1 0 0  
3 ) = I N T O N  
4 ) =  0 
5 ) =  I T + 3 2  
6 ) = 3 5 + 2 5 6 + 3 2  
7 ) =NLCR 

I N E  SETRUT 
NUMBUT=O 

C 
C LINE NUMBERS 

ORGLNOsNUMBUT 
T E M P ( 1  ) = I N T O N  
TEMP ( 2 ) =VECMOD 
TEMP(3 )=LXRO 
T E M P ( 4 ) = V I Y 9 n O  
TEMP I 5 7 =CHRMOD 
CALL M O V U ~ D ( T E M P P O  
DO 5 0  I=I ,SCRNMX 
NUYBUT =NUMBOT+l 
CALL D S P S I Z ( B U T T 0 N  
CALL BNZDEC(1vTEMP 
T E M P ( l ) = I N T O N  
T E M P f 2  )=NLCR 

EN DL NO=NUMRlJT 
5 0  C A L L  MOVIJ2D( TEMP P O  

5 )  

NUMBlJT 1 
1)) 

3 )  

115 



C 
C SPEED L I N E  

C 
C SPEED DOTS 

C A L L  MOVIJZDI S P D L I N 9 b 5 )  

ORGSPD=NUMRI!T+ 1 
T E M P ( 1  )=LPNDIM 
TEMP ( 3 1 = O  
DO 6 0  1 = 5 o 9 5 0 O 1 5 n  
NUMBUT=NIJMBIJT+ 1 
C A L L  DSPSIZ tBUTTON(NUMRI fT1 )  
T E M P C Z ) = I + V I Y O  

60 CALL MOVIIZDITEMPsO,3) 
ENCSPD=NUMBUT 

C 
C WORD STOP 

N UMBIIT =NUMB[ IT+ I 
s TP BUT = NUM BUT 

D S P S I Z (  BU CALL 
TEMP 
TEMP 
TEMP 
TEMP 
TFMP 
TEMP 
TEMP 
TEMP 
TEMP 
CALL 

c 

1 )=BRIGHT 
2 )=VECMOD 
3 )=LXRBOn 
4 ) = V I Y 0  
5 ) =CHRMOD 
6 )=LETTER 
7 )=LETTER 
8 )=LETTER 
9 )=LFTTER 

TONtNUMBUT) )  

C BREAK L I N E  
NUMBUT=NUMRtJT+l 
BRKBUT = NUMBIJT 
C A L L  D S P S I  Z ( BUTTON I NUMBIJT 1 ) 
CALL  MOVI lZPlRREAK,n96)  
CALL  MOVIJZDt I NTOFF ,PUTTON (SRKRVT 1 +2 L) I ) 

C 
C DSPL I N+DSPLNZ 

CALL D S P S I Z I D S P L I N )  

CALL  D S P S I Z ( D S P L N 2 )  

PLACE = D S P L I N + 4  
C 
C D I S P L A Y E D  VALUES 

C A L L  MOVIJZD ( SETDSP 7 n t 3 n  ) 

CALL  MOVIJZD( SETDSP9093fl) 

ORGV A L =NUM RI!T 
T E M P I 1  )=TNTOFF 
TEMP ( 2 1 - L Y 9 8 0 0  
T E M P ( 3  )=LXRBOO 
T€MPl4)=CHRMOD 

NUMBUT=NIIMBIIT+ 1 
CALL  DSPSIZ(BUTTON(NUMBUT) )  
C A L L  MOVUZDITEMP,OI~)  
CALL  MOVUZD(SPACES,nrZO) 

DO 8 0  1 ~ 1 9 5  

80 TEMP(2)=TEMPIZ)+CHARHT 
ENDVAL=NUMBUT 

C 
C E D I T  FUNCTIONS 
C F I N I S H  

OLDBIJT=OQGLNO+ 1 
SPEED=STPBYT 
TEMP ( 1 ) =  INTON 
T E M P ( 2 ) = L X R 1 0 0  
TEMP(3)=LYR900-CHARHT 
TEMP(4)=CHRMOD 
C A L L  MOVUZDITEMP,OI~) 
NCIMBUT=NUMRUT+ 1 
E NDBUT =NUMBLIT 
C A L L  D S P S I  2 ( BIJTTON I NUMBIJT 1 1 
RETURN 

END 
C 

116 



C 
C 

COMPILATION 

3 0  

4 0  

C 
C 

5 0  
70 
80 

8 5  
C 
C 

90 
C 
C 

100 

120 

C 
C 
1 3 0  

C 
C 
140 

C 
C 
160 
C 
C 

SUBROUTINE READST ( L I N E 1  
NUMST = L I N E  
I F ( K 2 e L E e l I G O  TO 4 0  
C A L L  R D I N ( I N P U T ( 4 1 1 )  
DO 3 0  I = 1 , 4 0  
INPUT(I+40)=INP~JT(I+40)-129-32767 
I N P U T ~ 2 * I - l l ~ I N P ~ l T ~ l + 4 ~ l / 2 5 6  
INPUT(2+II=INPUT(I+4n)-INP(lT(2*I-11*256 
GO TO 70 
CALL TTYENB 
DO 5 0  I = l r 8 0  
C A L L  T l I N ( J 1  
I N P ~ J T ( I I = J  

CHECK FOR L I N E  FEED 

CONTINUE 

I N P U T (  J)=f l  

I N P U T ( I - 3 1 = I N P U T ( I )  

CHECK FOR DOLLAR S I G N  
I F ( I N P U T ( l l a E Q . 3 6 )  RETURN 
V I2 (NUMST)  = 1  
IF(INPUT(l).N€.LETTER(31) GO TO 1 0 0  

COMMFNT 
T Y P E ( N U M S T l = l  
C A L L  PACK 
RETURN 
I F ( I N P U T ( 1 l . E Q . B L A N K )  GO T O  1 2 0  
C A L L  S T N U M ( l r S 1  

I F ( I N P U T ( I l e E Q e 1 3 1  GO TO 7 0  

DO 80  J = I * 8 0  

DO 8 5  I = 6 9 8 0  

S T L A B L ( S l = N U M S T  
I = I N P U T ( 5 1  
I F ( I N P U T ( 1 2 l . E Q . E Q U A L l  GO TO 2 5 0  
IF(INPUT(6)*EQeLETTER(26)) GO TO 2 6 0  
I F ( I . E Q ~ L E T T E R ( l ) ~ A N D . I N P U T ( 4 ) . E Q . L E T T E R ~ 3 1 1  GO TO 2 7 0  
I F ( I . E Q . L E T T E R ( 2 1 1 1  GO TO 2 8 0  
I.F( I~FQ.LETTER(~).AND.INPUT(~IOEQ.LFTTER(~~II GO TO 2 9 n  
I F ( I . E Q . L E T T E R ( 1 ) l  GO TO 1 3 0  
I F ( I . E Q ~ L E T T E R 1 5 1 1  GO TO 140 
I F ( I e E Q e L E T T E R ! 6 1 1  GO TO 1 6 0  

I F ( I e E Q e L E T T E R ( 1 5 ) I  GO TO 1 9 0  
I F ( I . E Q * L E T T E R ( 1 8 1 1  GO TO 2 1 0  
I F ( I . E Q . E Q U A L )  GO TO 2 2 0  

I F I I ~ E Q ~ L F T T E R ( 1 4 1 )  GO TO 1 8 n  

GO TO 999 

PAUSF 
T Y P E ( N U M S T l s 4  
CALL PACK 
RETURN 

R EAD 
TYPE(NUMST)=6 
C A L L  V A R I A B ( 9 1 1 1  
CALL PACK 
RETURN 

I F  
I F ( I N P U T ( 2 0 l . E Q . P  .OR. I N P ( J T ( 2 n ) . F O e R L A N K 1  GO TO 1 7 n  

L O G I C A L  I F  
CALL V A R I A B ( 7 9 1 )  
C A L L  V A R I A B ( 1 2 , Z l  
CALL STNUM(20,S)  
S T A T E ( N U M S T I ~ ) = S  
CALL PACK 
IF(INPUT(9).EQ.LETTER(5)1 T Y P E ( N U M S T l = 2 2  
IF(INPUT(9l.EQ.LETTER(141) TYPE(NIJMSTl "23  

117 



C 
C 
1 7 0  

C 
C 
1 8 0  

C 
C 
190 
C 
C 

C 
C 
200 

C 
C 
210 

C 
C 
2 2 0  

230 

2 4 0  

I F ( I N P U T ( 9 ) . E Q . L E T T E R  
X TYPE(NIJMST)-24 

X TYP E ( NIJMST = 2  5 

X T Y P E ( N U M S T ) = 2 6  

X TYPE ( NUMST = 2  7 

IF ( INPUT(9 ) .EQ.LETTER 

I F ( I N P U T ( 9 ) e E Q e L F T T F R  

I F ( I N P U T ( 9 ) e E Q e L E T T E R  

RETURN 

A R I T H M E T I C  I F  
TYPE(NUMST)=21  
C A L L  V A R I A B ( 7 . 1 )  
C A L L  S T N U M ( 9 r S )  
STATF(NUMST,Z)=S 
C A LL S TN UM ( 1 2  9 S ) 
S T A T F (  NUMST13 ) =S 
CALL S T N I J M ( 1 5 r q )  
STATE(NUMSTy4)  =S 
C A L L  PACK 
RETURN 

END 
TYPE(NUMST)=5  
CALL  PACK 
RETURN 

GO TO 

1 2  

1 2  

7 )  

7 )  

I F ( I N P U T ( 1 5 ) . N F e n  .AND. TNPUT(15).NF.RLbNK) GO TO 200 

GO TO SS 
TYPE(NUMST ) = 2  
CALL  S T N U M ( l O 9 S )  
STATE(NUMST, I )=S  
C A L L  PACK 
RETlJRN 

COMPUTED GO TO 
TYPE(NUMST)=J  
C A L L  STNUM(11,S)  
STATE[NUMST. l )=S  
C A L L  STNUM(14.S)  
S T A T E ( N U M S T I ~ ) = S  
C A L L  S T N U M ( 1 7 r S )  
STATE ( NUMST.3 =S 
C A L L  V A R I A B ( 2 l r 4 )  
C A L L  PACK 
RETURN 

WRITE 
TYPE(NUMST)=7  

C A L L  PACK 
RETURN 

ASSIGNMENT 
C A L L  V A R I A B ( 4 9 1 )  
C A L L  VAR I A B ( 6  9 2 )  
OPONE= I N P U T (  7 ) 
IF(OPONE.NE.0 .AND. 0PONE.NE.RLANK) GO TO 2 3 n  
TYPE(NUMST)=8  
C A L L  PACK 
RETURN 
C A L L  V A R I A B (  8 9 3) 
IF(OPONE.EQ.PLUS) TYPE(NUMST)=9  
IF(OPONEeEQ.MINUS) T Y P E ( N U M S T ) = 1 3  
IF(OPONEeEQ.STAR) TYPE(NUMST)=17  

C A L L  V A R I A B ( l O . 1 )  

OPTWO=INPUT(9 )  

C A L L  PACK 
RETURN 

I F(OPTWO.EQ.PLlJS) TYPF (NUMST 1 =TYPF (N IJMST)+ l  
IF(OPTWO.EQIMINUS) TYPE(NUhlST)=TYPF(NIJMST)+2  

IF(OPTWO.NE.O .AND. OPTWO.NE.BLANKI GO T O  2 4 n  

C A L L  V A R I A B ( I O I ~ )  

118 



I F (OPT WO e EO. S T  AR ) TYPE ( NIIMST 1 =TY P F  ( NI IMST +7 
C A L L  PACK 
RETURN 

A R R A Y = V A R  I ABLE 
T Y P E ( N U M S T ) = 2 8  
C A L L  V A R I A R ( 6 9 1 )  
C A L L  V A R I A B ( 8 9 2 )  
C A L L  V A R I A B ( 1 0 , 3 )  
CALL V A R I A A f 1 3 . 4 )  
C A L L  PACK 
RETURN 

V A R I A B L E  = ARRAY 
T Y P E ( N U M S T ) = 2 9  
C A L L  V A R I A B ( 4 r l )  
CALL V A R I A B ( 8 r 2 )  
C A L L  VAR I A R (  10 9 3  1 
C A L L  V A R I A R ( I 2 , 4 1  
CALL PACK 
RETURN 

C A L L  
T Y P E ( N U M S T ) = 3 0  
C A L L  STNUM(16,S) 
S T A T E ( N U M S T , l ) = S  
C A L L  PACK 
RETURN 

SUBROUT I NE 
T Y P E ( N U M S T 1 - 3 1  

RETURN 

RETURN 
T Y P E ( N U M S T ) = 3 Z  
C A L L  PACK 
RETURN 

C A L L  E D E R R ( 1 4 )  
END 

CALL PACK 

C 
C 
2 5 0  

C 
C 
260 

C 
C 
270 

C 
C 
2 8 0  

C 
C 
290 

C 
999 

C 
C 

110 

C 
C 

20 

C 
C 

10 

C 
C 

SUBROUTINE STNIlM I M q " 4 )  
DO 110 I=I,Z 
TEMP I I ) = l 0 f l  
L-  I +M-1 
DO 110 J = 2 7 , 3 6  
I F  ( I N P U T ( L ) . E Q . L E ~ T E R ( J ) )  TEMP 
CONTINUE 

N = T E M P ( l )  * 10  + T E M P ( 2 )  
RETURN 
END 

IFlTEMP(l)*TEMP(2).GT.90.0R.TEMP 

1 ) - J - 2 7  

l )+TEMP(Z).FQ.O) C A L L  E D F R R ( 7 0 )  

I F ( I N P U T l 1 )  .EO. L E T T F R t K ) )  STATEfNIJMST,J)=K 
RETURN 

SURROlJTINE V A R I A R f  I v J 1  
DO 2 0  K = 1 + 3 6  

END 

SUBROUTINE PACK 
J=0 
.DO 10  I=1,21*2 
J=J+1 
STUFF I J,NlJMST 1 = I N P U T  
RETURN 
END 

SUBROUTINE XECUTE ( L  

T )  * 2 5 6  + I N P U  

EXECUTION 
N E )  

( I + 1 1  

119 



C 
1 0 3 0  
107n 
1 0 8 0  
1090 
1100 
1110 
1 1 2 0  
1 1 3 0  
1 2 6 0  
1 2 7 0  

1290 
1 2 8 n  

i 3 9 n  
13117 
13217 
1900 

C 
C 

30 

C 
C 

2 0  

C 
C 

1074 

C 

CALL XCOMNT 
C A L L  XGOTO 
C A L L  XCGOTO 
C A L L  XPAUSE 
C A L L  XEND 
C A L L  XREAD 
C A L L  XWRITE 
C A L L  XRITHC 
C A L L  XARTHF 
C A L L  X L O G I F  
C A L L  XARREV 
C A L L  XVEARR 
CALL XSBCAL 

TYDE-7 

I TYPE-2 11 

C A L L  XSUBQ11 
C A L L  XRETRN 
I F  (5RKFLG.EO.n) C A L L  BRAKE 
BRKFLG = 0 
GO TO 1020 
END 

SCIBROIJTINE PENSEE 
I NTFGER PENPUF( 5n)  
C A L L  LPNRDt  PENBUF) 
I = I A R S  (PFNRIIF I 2  1 ) 
CALL LPNCLR 
I F  
C A L L  MOVUZD ( INTOFF,R1 'TTON(BRKF) I IT )+?* l )  

C A L L  MOVU2D(SETDSP,DSPLN2,30) 
DO 3 0  J = ORGSPDqENDSPD 
I F  ( I . L T e B U T T O N ( J ) . O R . I . C T . B U T T O N ( J + l ) )  GO TO 3 0  
C A L L  MOVU2D (LPNDIMrRIJTTON(SPEED)rl) 

C A L L  MOVtJ2D (BPIGHTr@UTTON(SPEED),l) 

( I .GT eRIJTTON ( STPPUT 1 .  AND. I eLT e RIITTON I STPBIJT+ l )  1 CALL STOOP 

S E T D S P ( Z ) = L Y R O  

SPEED = J 

RETURN 
CONT I N  UE 
RETlJRN 
END 

SUBROUTINE XCOMNT 
I F ( l V I Z . G T m 2 I  GO TO 20 
C A L L  UNDO 
C A L L  MOVlJ2D(LETTER(3 ) rPLACEI1 )  
C A L L  D E L A Y  
C A L L  xECUTEI P O I N T (  E X L I N E )  1 
END 

SUBROUTINE XGOTO 
I F ( I V I 2  .GTm 2 1 GO TO 1074 
C A L L  UNDO ' 

C A L L  DELAY 
I F I S T L A B L I J I )  *EQ.: 0) C A L L  E X E R R ( 1 6 )  
C A L L  X E C U T E ( S T L A B L ( J 1 ) )  
END 

C A L L  MOVU2D(GOTO,PLACE94) 

1 2 0  



C 

I00 

C 
C 

1 0 9 2  

1091 

1 1 0 5  

1 1 0 2  

C 
C 

1111 

1 1 1 5  

10 

2 0  

C 

SUBROUTINE XCGOTO 
I =VAR ( J4 1 
I F ( R A M G E ( I s l s 3 ) )  C A L L  E X E R R ( 2 )  
J l = S T A T E ( E X L I N E 9 I I  
I F f I V I Z  sGTo 2 I GO TO 100 

C A L L  M O V U ~ D ( C G O T O ( ~ ~ I ) P P L A C E ~ I O )  
C A L L  UNDO 

CALL DELAY 
I F f S T L A B L f J I )  * E Q c  0) C A L L  E X E R R ( 1 7 )  
C A L L  X E C U T E ( S T L A B L ( J 1 ) )  
END 

SUBROUTINE XPAUSE 
I F f I V I Z  eGTe 2 
SPOT=PLACE 
C A L L  UNDO 
GO TO 1091 
C A L L  MOVU2D(BRIGHT,DSPLN2,1) 
SPOT=DSPLN2+3 
C A L L  MOVU2Df PAIJSEeSPOT9L) 
E X L I N E = P O I N T ( E X L I N E )  
C A L L  STOOP 
END 

SUBROUTINE XEND 
I F ( I V I 2  .GTc 2 
C A L L  UNDO 
S P O T l P L A C E  

C A L L  M O V U 2 D f B R I G H T e D S P L N Z I I )  
SPOT=DSPLN2+3 
C A L L  MOVU~D(ENDISPOTI~)  
CALL STOOP 
END 

GO TO 1102 

) GO TO 1 0 9 2  

1 GO TO 1 1 0 5  

SUBROUTINE XREAD 
I F f I V I Z  eGTe 2 ) GO TO 1 1 1 5  
C A L L  UNDO 
C A L L  MOVUZD(READgPLACE94)  
READ( l r  1111) V A R f  J1) 
F O R M A T ( I 5 )  
GO TO 10 
C A L L  M O V U 2 D ( S T U F F ( l p E X L I N E ) 9 D S P L N t + S r l l )  
C A L L  MOVU2D ( BR Y GHT 9DSPLN2 9 1 ) 
R E A D ( 1 9 1 1 1 1 )  V A R ( J 1 )  
C A L L  MOVU2D( INTOFF,DSPLN2r l )  
DO 2 0  1 ~ 1 9 5  
I F ( D S P V A R ( 1 ) c E Q a J l )  C A L L  P U T V A R ( I 9 J l )  
CONTINUE 
C A L L  XECUTE( P O I N T (  E X L I N E  I 
END 

C 
SUBROUTINE XWRITE 
I F ( I V I 2  GTo 2 1 GO TO 1 1 2 5  
C A L L  UNDO 
C A L L  M O V U ~ D ( W R I T E , P L A C E I ~ )  
W R I T E ( l r l l 2 1 )  V A R ( J 1 )  

C A L L  DELAY 
GO TO 10 

1 1 2 1  FORMAT ( /16/ l  

1 1 2 5  C A L L  MOVUZD ( S T U F F  ( l r E X L I N E ) r D S P L N 2 + 3 r l l )  
C A L L  M O V U 2 D t R R I G H T r D S P L N 2 9 1 )  
W R I T E ( l r l l 2 1 )  V A R ( J 1 )  
CALL MOVUZD( INTOFF9DSPLN2,1)  

10 C A L L  X E C U T E ( P O I N T ( E X L 1 N E ) I  
END 

c 
C 

SUBROUTINE X R I T H ( N )  
121 



GO TO (ii30,i140siisn9ii609~i7~~iian,ii9n~i2nn~ 

V A R ( J l ) = V A R ( J Z )  
GO TO 3 0 0 0  
IDUM= V A R ( J 3 )  
GO TO 2970 
IDUM= V A R ( J 3 ) + V A R ( J 4 )  
GO TO 2970 
IDUM= V A R ( J 3 ) - V A R ( J 4 )  
GO TO 2970 
IDUM= V A R ( J 3 ) + V A R ( J 4 )  
GO TO 2970 
IDUM= - V A R ( J ? )  
GO TO 2970 
I D U M z  VAR( J 4 ) - V A R  ( J 3 )  
GO TO 2970 
IDUM= - V A R ( J ? ) - V A R ( J 4 )  
GO TO 2970 
IDUM= - V A R ( J 3 ) * V A R ( J 4 )  
GO TO 2970 
V A R ( J l ) = V A R ( J 2 ) + V A R ( J ? )  

VAR(Jl)=VAR(JZ)*VAR(J3)+VAR(J4) 

X 121091220r1230~1240~1250)~ N 

GO TO 3 0 0 0  

GO TO 3 0 0 0  

GO TO 3ono 

GO T O  3ono 

V A R ( J l ) = V A R ( J 2 ) + V A R ( J ? ) - V A R 0 4 )  

VAR(Jl)=VAR(J2)+VAR(J?)*VAR(J4) 

VAR (J1)= lDUM 
C A L L  X A R I T H  
END 

+VAR ( J 2  ) 

1130 

1140 

1 1 5 0  

1160 

1170 

1180 

1190 

1200 

12 in  

1220 

1230 

1 2 4 0  

1 2 5 0  

2 9 7 0  
3 0 0 0  

C 
C 

1 2 6 2  

1 2 6 4  

1 2 6 6  
3 1 0 0  

3 2 0 0  

C 
C 

3 0 1 0  
3 0 2 0  

3 0 3 0  

C 
C 

1 2 7 0  

1 2 8 0  

SUBROUTINE XARTHF 

JDUM=l 
GO TO 31no 
JDUM=2 
GO TO 3 1 0 0  
JDUM=3 

I F I V A R ( J 1 ) )  1 2 6 2 9 1 2 6 4 * 1 2 6 6  

J l = S T A T E ( E X L I N F v J D U Y + l )  
I F f I V I Z  eGTe 2 
C A L L  UNDO 
C A L L  MOVU2D(ARTHIF(l*JDUM)9PLACE 
C A L L  DELAY 
I F ( S T L A B L ( J 1 )  .EQ. 0 )  C A L L  EXERR 
C A L L  X E C U T E ( S T L A B L ( J 1 )  
END 

SUBROUTINE X A R I T H  
DO 3 0 1 0  I=195 
I F ( D S P V A R ( I ) . N F . J l )  GO 
C A L L  P U T V A 9 1 I s J l )  
GO TO 3 0 2 0  
CONT I NUE 
I F ( I V I 2  e G T e  2 

TO 3 0 1 P  

1 GO TO 3 0 3 0  
C A L L  UNDO 

T E M P ( 1  )=EQUAL 
C A L L  MOVU2D(SPACES,PLACEs12) 

C A L L  R N Z D E C ( V A F ? ( J l ) , T E M P ( 2 ) )  
C A L L  MOVUZD(TEMP*PLACE+5r4)  
C A L L  DELAY 
CALL X EClJTE ( P O  TNT ( EXLT NF ) ) 
END 

SUBROUTINE X L O G I F  ( N )  
GO T O  ( i 2 7 0 , i 2 ~ 0 ~ l 2 9 n ~ 1 3 n n ~ i 3 1 n ~ i ~ 2 n l r  N 
I F ( V A R ( J l ) . E Q . V A R ( J Z ) )  GO TO 1 3 4 0  
GO TO 1330 

GO TO 1 3 3 0  
I F ( V A R ( J l ) e N E e V A R ( J 2 ) )  GO TO 1340 

122 



1290 

1 3 0 0  

1 3 1 0  

1320 

1330 
1340 

C 
C 

1 3 5 0  

C 
C 

10 

C 
C 

10 

2 0  

C 
C 

10 

20 

C 
C 

10 

2 0  

I F ( V A R ( J I ) e L T e V A R ( J 2 ) )  GO TO 1340 
GO TO 1 3 3 0  
I F ( V A R ( J l ) . L E e V A R ( J 2 ) )  GO TO 1 3 4 0  
GO TO 1 3 3 0  
I F ( V A R ( J I ) e G T o V A R ( J 2 ) )  GO TO 1 3 4 0  
GO TO 1 3 3 0  
I F ( V P R ( J l ) e G E . V A R ( J Z ) )  GO TO 1340 
GO TO 1 3 3 0  
CALL X N O ~ G F  
C A L L  XYSLGF 
END 

GO T O  1 3 5 0  

SIJEROUTINE XYSLGF 
J l = S T A T E ( E X L I N E r 3 )  
I F ( I V I 2  .GTa 2 

C A L L  MOVU2D(YESLGT1PLACEr9 )  

I F ( S T L A B L ( J 1 )  .EQ. 0 )  C A L L  E X E R R ( 1 5 )  

C A L L  UNDO 

C A L L  DELAY 

C A L L  XECUTE ( S T L A E L ( J 1 ) )  
END 

SUEROIJT I N E  XNOLGF 

C A L L  UNDO 

C A L L  DELAY 
C A L L  X E C U T E ( P O I N T ( E X L 1 N E ) )  
END 

I F ( 1 V I Z  eGT. 2 

C A L L  MOVU2D(NOLGT,PLACEr7)  

GO TO 10 

SUEROIJT I NE XSURRIJ 
I NTEGER SUBR 1 7 1 
DATA SURRI 1) rS!lRQ( 2 

DO 10 I = l r 7  
IF(SUBR(7)~LT.~)SIIER(I)=SIJRR(I)-128-32767-1 
I F (  IVIZ.GT.2)  GO TO ,2n 

C A L L  MOVUZD(SUBRrPLACEr7 )  

r S I J P Q ( ? )  r S ! I R Q ( 4 1  r S I ' P R (  5 )  r q U R R ( 6 )  r S ' I F 3 R I  7 )  
K / 2 H  r 2 H  S 9 2HIlB 9 2HRDrZHIIT 9 2 H I  N r 1 H E /  

C A L L  UNDO 

C A L L  D E L 4 Y  
CALL  X E C I I T E ( P O I N T ( F X L 1 N E ) )  
END 

SURROUTINE XSBCAL 
INTEGER C A L L ( 4 )  
DATA C A L L ( l ) r C A L L ( 2 ) r C A L L ( 1 ) , C A L L o ) / 2 H  r 2 H  C r Z H A L * l H L /  
DO 1 0  I=1 .4  
IF (CALL(4 ) .LT .0 )CALLo=CPLL(  1 ) - 1 2 8 - 3 2 7 6 7 - 1  
I F ( I V I Z . G T . 2 )  GO T O  2 0  

C A L L  MOVUZDICALL r P L P C E r 4 )  
CALL  UNDO 

C A L L  DELAY 
I F ( S T L A R L ( J l ) . E Q . O )  CALL  E X E R R ( 5 n )  
SUERET=EXLINE 
C A L L  X E C U T E ( S T L A B L ( J 1 ) )  
END 

SUEROUTI NE XRETRN 
INTEGER R E T U ( 5 )  
DATA R E T U ( l ) , R F T U ( 2 ) r R E T U ( 3 ) r R E T U ( 4 ) , R E T U ( 5 ) / 2 H  

X ZHETIZHURI~HN/ 
DO i n  1 = i r 5  

IF(IVIZ..GT.~) 50 T O  2 n  
IF(RFTU(S).LT.~)RFTIJ(T)=QETU(I)-I28-72767-1 

CALL UNDO 

CALL  DELAY 
CALL  X E C U T E ( P O I N T ( S U 6 R E T ) )  
END 

C A L L  MOVIJ2DI RETlJrPLACE 95 

r2H Rq 

123 



C 
C 

SUAROUTINE XARREV 
I =VAR( J1) 
J=VAR ( J 2  
K=VAR ( J 3  ) 

J1=J4 
C A L L  X A R I T H  
END 

Z A R R A Y ( I I J ~ K ) = V A R ( J ~ )  

C 
C 

SUBROUTINE XVEARR 
I =VAR ( J 2  ) 
J=VAR ( J3 
K=VAR ( J 4  ) 

C A L L  X A R I T H  
END 

V A R ( J I ) = Z A R R A Y ( I ~ J I K )  

C 
C 

SUBROUTINE BRAKE 
T E M P ( 1 )  = BRIGHT 
T E M P ( Z )  = LYR9OO-LBUF(EXLINE)+CHARHT 
C A L L  MOVULD (TEMP9BUTTON(BRKB{ IT )+Zr2 )  
B R K F L G = I  
C A L L  STOOP 
END 

C 
c 

5 n  

C 
C 

2 0  

C 
C 

10 

C 
C 

40  
5 0  

100 

1 5 0  

3 00 

S URROUT I NF I lNDO 
IF ( P R E S L N ~ E O . ~ )  GO TO 5n 

OLDBUT = ORGLNO + L B U F  ( E X L I N E )  
PRESLN = E X L I N E  

CALL MOVUZD ( I N T O N  r B U T T O N ( 0 L D B I I T )  9 1 )  
C A L L  MOVll20 ( I’JTON 9DBUF I PRESLN 1 9 1  ) 

S E T D S P ( 2 )  = LYR900-LRUF(EXLINE)*CHARHT 
C A L L  MOVUZD ( S E T D S P ~ D S P L I N I Z ~ )  
C A L L  MOVU2D (BRIGHTrRUTTON(OLDBUT),l) 
RETURN 
END 

SUBROUTINE DELAY 
K=(ENDSPD-SPEEP)+5 
DO 2 0  I = l r K  
DO 20  L = 1 9 2  
DO 2 0  J = 1 9 5 0 0 0  
CONTINUE 
RETURN 
END 

SUBROUTINE F X E R R t N )  
W R I T E (  1 r l O ) N  
F O R M A T ( 1 6 H  EXECUTION ERROR914)  
C A L L  E D I T O R  
END F UMCT IO 

SUBROUTINE E D I T O R  
C A L L  TTYFNR 
I F ( L P N C H K ( l ) . G T . l )  CALL X E C U T E ( F X L 1 N F )  
CALL TTYCHK(FLG9CHARTR)  
I F ( e N O T e F L 6 )  GO TO 50 
R E A D ( 1 9 1 0 0 )  F C N s K l v K Z  
F O R M A T ( A 2 9 2 I Z )  
DO 1 5 0  I = 1 , 1 6  

CONTINUE 
C A L L  E D E R R ( 2 0 )  
I F ( K 2 c E Q . 9 9 )  GO TO 4 n  
L I N E l = L l N N U M ( K l )  
L I N E 2 = L I N N U M ( K 2 )  

IF(FCN.EQ.COM(I)) GO T O  3017 

124 



GO T O  f i , 2 , 3 , 4 9 5 r 6 r 7 9 R 1 ~ 9 1 n 9 ~ ~ 9 1 2 , i ~ ~ ~ 4 ~ l 5 , l 6 ~ l 7 ~ ~ ~ ~ l 9 , ? n ) ~ ~  
1 C A L L  CHANGE 
2 CALL  INSERT 
3 C A L L  DELFTE 
4 C A L L  CONDEN 
5 CALL EXPAND 
6 CALL S T A R T  
7 C A L L  MOVE 
0 C A L L  SETBRK 
9 CALL K I L R R K  
10 C A L L  VARSET 
11 C A L L  SHOVAR 
12 C A L L  REMVAR 
13 CALL  SAVF 
14 CALL  RESTRT 
1 5  CALL  PAGF 
16 C A L L  ROLL  
17  C A L L  E D E R R ( 2 0 )  
1 6  C A L L  EDERR(2O)  
19 CALL  E D E R R ( 2 0 )  
2 0  C A L L  E D E R R ( 2 0 )  

C 
C 

END 

SUBROUTINE STOOP 

SPEED=STPRUT 

CALL EDITOR 
END 

C A L L  MOVUZD (LPNDIM,RIJTTON(SPEED), l )  

CALL  MOVUZD f BRIGHT,BUTTON(STPBUT) r l )  

C 
C 

SUBROUTINE R E G E N ( 1 J K )  
I F  f IJK. tT.TOTST) CALL  E D F R R ( 3 6 )  
I F f I J K e N F e O ) T O P L I N = I J K  

DO 10 I = l r T O T S T  
5 C A L L  DSPCUTf RIITTON(FNOR1IT) 

L B U F f  I )=O 
10 D B U F f I ) = O  

C A L L  MOVU2DfINTOFF,RUTTON(RRKElUT)+2,1) 
CFLAG= 1 
L I NE=TOPL I N 
SCRNSZ =O 

20 J V I Z = V I Z ( L I N E )  
I F  (JVIZ.GT.4) GO TO 8n  
GO TO ( 3 n 9 3 f ! 9 8 0 1 5 0 ) 9 J V I Z  

3 0  1FfSCRNSZ.GE.SCRNMX) GO T O  2 n n  
SCRNSZ=SCRNSZ+l 
GO TO f 4 0 , 3 5 ) r J V I Z  

C A L L  Y O V U 2 D ( B R E A K r 0 9 6 )  
3 5  B R E A K ~ ~ ~ = L Y R ~ I ~ ~ - S C R N S Z * C H A R H T  

' 40 C A L L  D S P S I Z ( D B U F ( L 1 N E ) )  
L B U F ( L I N E ) = S C R N S Z  
L INNUM f SCRNSZ 1 = L I N E  
CFLAG=O 
T E M P f l ) = I N T O N  
TEMP( 2 )=LXRlOO 
C A L L  M O V U ~ D [ T E M P * O I ~ )  
C A L L  
C A L L  MOVUZDfNLCR90, I )  
GO T O  80 

MOVUZD t ST'JFF ( 1 , L INE ) 9 0 9  11 ) 

5 0  I F l C F L A G e E Q e 1 ) G O  TO 80 - .  

C F L A G = l  
SQUARE(4)=LYR90O-SCRNSZ*CHARHT 
C A L L  MOVUZDfSQUARE90,7) 

I F ( L I N E s N E . 0 )  GO TO 20 
200 C A L L  MOVULDf INTON,BUTTON(OLDBI lT)  9 1 )  

C A L L  MOVU2Df INTOFF,DSPLIN ,1 )  
1 F f L B U F f P R E S L N ) s F Q . n )  RETURN 
C A L L  M O V U 2 D ( L Y R 9 ~ O - L R ~ J F ( ~ R F S L N ) * C H b R H T r F ( U T T O ~ ( R P r B I I T ) + ~ , l )  

C A L L  

80 L I N E = P O I N T ( L I N E )  

OLDBUT=ORGLNO+LBUFfPRFSLN) 

RETURN 
END 

MOVUZDf BRIGHT r BUTTON ( PLbRUT ) e 1 1 

1 2 5  



C 
C 

SUBROUTINE CHANGE 

C A L L  R E A D S T ( L I N E 1 )  
C A L L  REGEN(O1 
C A L L  T l O U T ( l 0 )  
C A L L  E D I T O R  
END 

IF(RANGE(K1,lrSCRNSZ))CALL E D E R R ( 1 )  

C 
C 

C 

5 

10 

20 
30 

C 
C 

1 3 3  

C 
C 

10 

20 

3 0  

C 
C 

10 

2 0  

SUBROUTINE I N S E R T  
I F ( R A N G E ( K l r l r S C R N S 2  ) )  C A L L  E D E R R ( 2 )  
DO 20  I = l r K 2  
C A L L  READST( T O T S T + l )  
CHECK FOR DOLLAR S I G N  
I F ( I N P U T ( l ' ) . N E . 3 6 )  GO TO 5 
C A L L  S E A R C H ( 4 r n v l )  
GO TO 3 0  
TOTST=TOTST+l  
DUMMY=LI N E 1  
L I N E l x D U M M Y  
D U M M Y = P O I N T ( L I N E l )  
I F ( V I Z ( D U M M Y I  eGT.2 .AND.DIJMMYoNE.O) GO TO I n  
POINT(TOTST)=DUMMY 
P O I N T ( L I N E l ) = T O T S T  
L I N E l = T O T S T  
C A L L  R E G E N ( 0 )  
C A L L  T l O l J T  f 10 1 
C A L L  E D I T O R  
END 

SUBROUTINE DELETE 

DUMMYEL1 N E 1  
DUMMY= POINTfDUMMY) 

I F ( R A N G E ( K l r l r S C R N S 2 ) )  C A L L  E D E R R ( 2 4 )  

I F ( V I Z ( D U M M Y )  .EQ* 3 )  GO TO 1 3 3  
I F ( V I Z ( D U M M Y )  eGE. 4 )  C A L L  E D E R R ( l 2 )  
V I2 ( L I N E 1  1 =3 
C A L L  R E G E N ( 0 )  
C A L L  E D I T O R  
END 

SUBROUTINE CONDEN 

CFLAG= 0 
L I N E l + P O I N T ( L I N E l )  
IF(LINE1.EQ.O) GO TO 30 
J V I Z = V I Z ( L I N E l )  

IF(K1.LE. 0 .OR. Kl.GE.KZ .OR.K2 .GT. SCRNSZ) C A L L  E D E R R ( 2 7 )  

I F ( J V I Z  .LT. 4 )  GO TO ( 2 O r 2 0 r l O ) r J V I Z  
I F ( C F L A G  .EQ. I )  V I Z ( L I N E l ) = J V I Z + l  
GO TO i n  
K 1 = K 1 + 1  
IF(K1.GT.KZ) GO TO 3 0  
CFLAG= 1 
V I Z ( L I N E l ) = 4  
GO TO 10 
C A L L  REGEN (0 
C A L L  E D I T O R  
END 

SUBROUTINE EXPAND 
I F ( R A N G E ( K l r l r S C R N S 2 ) )  C A L L  E D E R R ( 2 8 )  
L I N E l = P O I N T ( L I N E l )  
IF (L INE1.EQ.O)  GO TO 30 
J V I Z = V I Z ( L I N E l )  
I F I J V I Z . L T . 5 )  GO TO ( 3 O 1 3 0 r l A 1 2 O )  , J V I Z  
V I Z ( L I N E l ) = J V I Z - l  
GO TO 10 
V I Z ( L I N E 1  )=I 
GO TO 10 

126 



3 0  

C 
C 

C A L L  R E G F N ( 0 )  
C A L L  E D I T O R  
END 

SUBROUTINE START 
I F ( R A N G E ( K l , I , S C R N S Z l )  C A L L  E D E R R ( 5 )  
E X L I N E = L I N E l  
BRKFLG=O 
I F  l V I Z ( L I N F I ) . E Q . Z I  RRKFLG = 1 
CALL UNDO 

CALL  EDITOR 
C A L L  R EGFN ( fl ) 

END 
C 
C 

10 
20 

30 
40 

50 
60 

SUBROUTINE MOVE 
I F  ( R A N G E ( K I , l , S C R N S Z ) )  C A L L  E D E R Q ( 1 3 1  
I F  ( R A N G F ( K 2 9 1 , S C R N S Z I )  C A L L  F D F R R ( 1 4 )  
I F  ( L I N E l . E Q . 1 1  C A L L  E D E R R ( 1 5 )  
IF(Kl.EQ.K7.0R.K?.EQ.Kl-I) C A L L  E D F R R ( 1 5  
DO 1 0  L I N F A  = l,lnnn 

CONTINUE 

I = P O I N T ( L 1 N E R )  
IF(VIZ(I).LE.Z.OR.T.EQ.n) GO TO 4 0  
CONTINUE 

J = P O I N T ( L 1 N E C )  

CONTINUE 
P O I N T  ( L I N E P )  = I 
P O I N T  ( L I N E R 1  = J 
P O I N T  ( L I N F C )  = L I N F l  
C A L L  R E G E N ( 0 )  
C A L L  E D I T O R  
END 

I F  ( P O I N T ( L I N F A ) . E Q . L I N F l I  GO TO 7n 

DO 70 L I N F B =  L I N E 1 , l n n n  

DO 5 0  L I N E C  = L I N E 2 , 1 0 0 0  

I F l V I Z ~ J l ~ L E ~ 2 ~ 0 R ~ J ~ E O . O )  60 TO 60 

C 
C 

SUBROUTINE SETBRK 

V I 2  I L I N E 1  )=2 
C A L L  R EGEN (0 I 
C A L L  E D I T O R  
END 

I F ( R A N G E l K 1 ~ 1 , S C R N S Z l )  C A L L  E D E R R ( 3 )  

C 
C 

SURROIJTINE K I L H R K  

V I Z ( L I N € l ) = l  

C A L L  E D I T O R  
END 

I F ( R A N G F ( K l , l , S C R N S I ) I  C A L L  F D F R R ( 4 )  

CALL R EGEN ( o 

C 
C 

10 

C 
C 

2 1 1  

SURRnl lT I NE VARYFT 

VAR ( K 1  1 = K 2  
I F ( R A N G E ( K 1 , 1 , 2 6 ) )  CALL E D F R R ( 9 l  

DO I O  1 ~ 1 1 5  
I F ( D S P V A R ( 1 )  .EQ. K 1 1  C A L L  P U T V A R I 1 , K l l  
CONTINUE 
C A L L  EDITOR 
END 

5 lJRROl lT INF SHOVAR 
I F ( R A N G F ( K l , l , Z h ) )  CALL F D F R R ( l n )  
DO 2 1 1  I = 1 , 5  
I F ( D S P V A R ( I l a F O . K l )  CALL F D I T O R  
CONTINUE 
DO 2 1 5  Is195 
I F ( D S P V A R ( I ) . N F . n )  60 TO 2 1 5  
C A L L  P U T V A Y ( I , K I )  

1 2 7  



2 1 5  

C 
C 

C 
C 

2 2 2  

C 
C 

10 

5 

20 

C 
C 

10 

15  

C 
C 

C 
C 

C 
C 

C A L L  E D I T O R  
CONTINUE 
C A L L  E D E R R ( 1 1 )  
END 

SURROUTINE PUTVAR( I,J) 
D S P V A R ( 1  ) = J  
I =I+ORCVPL 
T E M P ( l ) = F Q U A L + L € T T E R ( J  ) * 2 5 6  
C A L L  B N Z D E C ( V A R ( J  ) e T E M P ( 2 ) )  
C A L L  MOVU2D(TEMPsRUTTON( I ) + 4 9 4 )  
C A L L  MOVUZD( INTON*BUTTON( I )  9 1 )  

RETURN 
END 

S t J R R O l l T  I N F  REMVAR 
DO 2 2 2  1 ~ 1 9 5  
I F ( D S P V A R ( 1 )  
N =  I+ORGVAL 
C A L L  MOVIJZD( 
DSPVAR ( I =O 
C A L L  E D I T O R  
CONT I N  UE 
C A L L  F D I T O R  
END 

NF.K1) GO TO 2 2 2  

N T O F F , R U T T O N ( N ) * l )  

SUBROIIT I NF SAVF 

J = l  
J = P O I N T  ( J) 
IFIJ.EQ.O) GO TO 2 n  
I F ( V I Z ( J ) . E Q . 3 )  GO TO 10 
DO 5 1 = l r 8 0  
I N P U T ( I ) = I S P A C E  
C A L L  O U T L I N ( J 1  
C A L L  W R L S ( I N P U T ( 1 ) )  
GO TO 10 
I N P U T  ( 4 1  I =  IDOL 1 
C A L L  W R L S ( I N P U T ( 4 1 ) )  
C A L L  SEARCH(4rO.2)  
C A L L  RESTRT 
END 

DATA I S P b C F , I D ~ L l / 7 ? , 7 H ~ l /  

SUBROUTINE O U T L I N ( L 1 N E )  
DO 10 Iz2oll 
I N P U T ( 2 * 1 + 2 ) = S T U F F ( I I L I N F ) / 2 5 6  
INPUT(2+1+3)=STUFF(IrLINE)-INPLJT(2* 
I N P U T (  1) n S T t l F F t  1 * L I N E )  /256 
I N P U T (  2 1 =STUFF ( 1 , L I N E )  - I N P U T  ( 1) *256 
DO 1 5  I = 1 $ 4 0  
INPUT(I)=INPUT(2+I-l)*256+INP~tT(2*1 
RETURN 
END 

SUBROUTINE RESTRT 
C A L L  REGEN ( 1 )  
C A L L  EDITOR 
END 

SUBROUT I NE PAGE 
I = L I N N U M  (SCRNSZ)  

C A L L  REGEN ( P O I N T (  I )  1 
C A L L  EDITOR 
END 

I F ( P O I N T ( 1 ) e E Q . O )  C A L L  EDITOR 

+2 ) *256 

+ 1 2 0 - 3 2 7 6 7 - 1  

128 



C 
C 

SUBROUT I NE ROLL 

I DUM= T OPL I N 
J D U W S P E E D  
SPEED ENDSPD-2 
DO 20  I = l s K l  

I F ( I D U M e E Q o 0 )  GO TO 30 
I F ~ V I Z ( I D U M ) . E Q ~ 3 o O R e V I Z ( I D U M ) P G T e 4 )  GO TO 10 
C A L L  DELAY 
TOPL I N =  I DUM 

20  C A L L  R E G E N t I D U M I  
30  SPEED=JDUM 

C A L L  E D I T 0 9  
END 

I F ( K 1 e L E r a O )  C A L L  EDTTOR 

10 I D U M = P O I N T ( I D U M )  

C 
C 

L O G I C A L  FUNCTION R A N G E ( I 9 J . K )  
RANGE=oTRUEo 
I F ( I  eGEe J .AND. I .LE* K )  RANGF=eFALSFe 
RETURN 
END 

SUBROUTINE EDERR(N1 
W R I T F  I 1 9  10 1 N 

10 FORMAT(11H . E D I T  ERROR9141 
C A L L  EDITOR 
END 

C 
C 

SUBROUTINE RENTRY 
C A L L  I N I T  
C A L L  EDITOR 
END 

NASA-Langley, 1970 - 8 c- 8 9 129  



I 

c 

- 
Washington, D.C. PO 


